Totally accretive operators

Author:
Ralph deLaubenfels

Journal:
Proc. Amer. Math. Soc. **103** (1988), 551-556

MSC:
Primary 47B44; Secondary 47D05

DOI:
https://doi.org/10.1090/S0002-9939-1988-0943083-7

MathSciNet review:
943083

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a (possibly unbounded) linear operator on a Banach space. We show that, when generates a uniformly bounded strongly continuous semigroup , then generates a bounded holomorphic semigroup (BHS) of angle if and only if generates a BHS of angle . We show that each power of generates a uniformly bounded strongly continuous semigroup if and only if generates a BHS of angle if and only if each power of generates a BHS of angle . If is a linear operator on a Hilbert space, then each power of generates a strongly continuous contraction semigroup if and only if is positive selfadjoint.

**[1]**A. V. Balakrishnan,*Fractional powers of closed operators and the semigroups generated by them*, Pacific J. Math.**10**(1960), 419–437. MR**0115096****[2]**Earl Berkson,*A characterization of scalar type operators on reflexive Banach spaces*, Pacific J. Math.**13**(1963), 365–373. MR**0155192****[3]**P. Chernoff,*On totally accretive operators*, unpublished note, 1978.**[4]**Ralph deLaubenfels,*Powers of generators of holomorphic semigroups*, Proc. Amer. Math. Soc.**99**(1987), no. 1, 105–108. MR**866437**, https://doi.org/10.1090/S0002-9939-1987-0866437-5**[5]**H. R. Dowson,*Spectral theory of linear operators*, London Mathematical Society Monographs, vol. 12, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR**511427****[6]**Jerome A. Goldstein,*Some remarks on infinitesimal generators of analytic semigroups*, Proc. Amer. Math. Soc.**22**(1969), 91–93. MR**0243384**, https://doi.org/10.1090/S0002-9939-1969-0243384-2**[7]**Jerome A. Goldstein,*Semigroups of linear operators and applications*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR**790497****[8]**Tosio Kato,*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473****[9]**A. Pazy,*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486****[10]**M. Reed and B. Simon,*Methods of modern mathematical physics*, part II, Academic Press, 1975.**[11]**Kôsaku Yosida,*Functional analysis*, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR**617913**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47B44,
47D05

Retrieve articles in all journals with MSC: 47B44, 47D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0943083-7

Article copyright:
© Copyright 1988
American Mathematical Society