Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sequential conditions and free products of topological groups


Authors: Sidney A. Morris and H. B. Thompson
Journal: Proc. Amer. Math. Soc. 103 (1988), 633-638
MSC: Primary 22A05; Secondary 20E06, 54D55
DOI: https://doi.org/10.1090/S0002-9939-1988-0943096-5
MathSciNet review: 943096
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ A$ and $ B$ are nontrivial topological groups, not both discrete, such that their free product $ A\coprod B$ is a sequential space, then it is sequential of order $ {\omega _1}$.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Arhangel'skiĭ and S. P. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320. MR 0240767 (39:2112)
  • [2] Ryszard Engelking, General topology, Mathematical Monographs, 60, PWN, Warsaw, 1977. MR 0500780 (58:18316b)
  • [3] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107-115. MR 0180954 (31:5184)
  • [4] -, Spaces in which sequences suffice. II, Fund. Math. 61 (1967), 51-56. MR 0222832 (36:5882)
  • [5] M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324 (Russian); English transl., Amer. Math. Soc. Transl., no. 35 (1951); reprint, Amer. Math. Soc. Transl. (1) 8 (1962), 305-364.
  • [6] -, On free products of topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 343-354. (Russian) MR 0036768 (12:158c)
  • [7] J. P. L. Hardy, S. A. Morris, and H. B. Thompson, Applications of the Stone Čech compactification to free topological groups, Proc. Amer. Math. Soc. 55 (1976), 160-164. MR 0424994 (54:12952)
  • [8] M. S. Khan and S. A. Morris, Free products of topological groups with central amalgamation. I, Trans. Amer. Math. Soc. 273 (1982), 405-416. MR 667153 (84c:22002a)
  • [9] -, Free products of topological groups with central amalgamation. II, Trans. Amer. Math. Soc. 273 (1982), 417-432. MR 667154 (84c:22002b)
  • [10] S. A. Morris, Metrizability of free products of topological groups, Bull. Malaysian Math. Soc. 6 (1983), 7-11. MR 733879 (85e:22003)
  • [11] -, Free abelian topological groups, Categorical Topology (Proc. Conf., Toledo, Ohio, 1983), Heldermann Verlag, Berlin, 1984, pp. 375-391. MR 785024
  • [12] S. A. Morris and P. Nickolas, Locally invariant topologies on free groups, Pacific J. Math. 103 (1982), 523-537. MR 705248 (85d:22003)
  • [13] -, Locally compact group topologies on an algebraic free product of groups, J. Algebra 38 (1976), 393-397. MR 0399341 (53:3186)
  • [14] S. A. Morris and H. B. Thompson, Metrizability of subgroups of free topological groups, Bull. Austral. Math. Soc. 33 (1986), 103-112. MR 823858 (87d:22006)
  • [15] E. T. Ordman and B. V. Smith-Thomas, Sequential conditions and free topological groups, Proc. Amer. Math. Soc. 79 (1980), 319-326. MR 565363 (81c:54042)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22A05, 20E06, 54D55

Retrieve articles in all journals with MSC: 22A05, 20E06, 54D55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0943096-5
Keywords: Sequential space, sequential order, free product of topological groups, Graev topology, free abelian topological group
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society