Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Conditional asymptotic formulae for a class of arithmetic functions


Authors: Werner Georg Nowak and Michael Schmeier
Journal: Proc. Amer. Math. Soc. 103 (1988), 713-717
MSC: Primary 11N37; Secondary 11M26, 11M41
DOI: https://doi.org/10.1090/S0002-9939-1988-0947644-0
MathSciNet review: 947644
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Under the assumption of Riemann's Hypothesis, a general asymptotic formula for sums $ \sum\nolimits_{n \leq x} {a\left( n \right)} $ is established which applies (e.g.) to arithmetic functions $ a\left( n \right)$ defined by a kind of convolution of the Möbius function with some divisor function.


References [Enhancements On Off] (What's this?)

  • [1] A. Axer, Über einige Grenzwertsätze, Sitzungsber. Österr. Akad. Wiss., Abt. II, 120 (1911), 1253-1298.
  • [2] H. Iwaniec and C. J. Mozzochi, On the circle and divisor problems (to appear).
  • [3] G. A. Kolesnik, On the estimation of multiple exponential sums, Recent Progress in Analytic Number Theory (Proc. Durham Sympos. 1979), vol. I, Academic Press, London, 1981, pp. 231-246. MR 637349 (83c:10056)
  • [4] E. Krätzel, Teilerprobleme in drei Dimensionen, Math. Nachr. 42 (1969), 275-288. MR 0262184 (41:6794)
  • [5] H. L. Montgomery and R. C. Vaughan, The distribution of squarefree numbers, Recent Progress in Analytic Number Theory (Proc. Durham Sympos. 1979), vol. I, Academic Press, London, 1981, pp. 247-256. MR 637350 (83d:10010)
  • [6] B. Z. Moroz, On the number of primitive lattice points in plane domains, Monatsh. Math. 99 (1985), 37-42. MR 778169 (86e:11095)
  • [7] B. Saffari, Sur le nombre de diviseurs "$ r$-free" d'un entier. $ Cas\,r = 2$ et $ r = 3$, C. R. Acad. Sci. Paris 265 (1967), 705-707. MR 0220687 (36:3739)
  • [8] -, Sur le nombre de diviseurs "$ r$-libres" d'un entier, et sur les points à coordenées entières dans certains règions du plan, C. R. Acad. Sci. Paris 266 (1968), 601-603.
  • [9] P. G. Schmidt, Zur Anzahl quadratvoller Zahlen in kurzen Intervallen, Acta Arith. 46 (1986), 159-164. MR 842942 (87g:11115)
  • [10] M. V. Subbarao and D. Suryanarayana, The divisor problem for $ \left( {k,r} \right)$-integers, J. Austral. Math. Soc. 15 (1973), 430-440. MR 0327696 (48:6038)
  • [11] D. Suryanarayana, The divisor problem for $ \left( {k,r} \right)$-integers. II, J. Reine Angew. Math. 295 (1977), 49-56. MR 0457383 (56:15589)
  • [12] D. Suryanarayana and R. Sitaramachandrarao, The number of pairs of integers with 1.c.m. $ \leq x$, Arch. Math. (Basel) 21 (1970), 490-497. MR 0274406 (43:171)
  • [13] -, The distribution of square-full integers, Ark. Mat. 11 (1973), 195-201. MR 0344208 (49:8948)
  • [14] D. Suryanarayana and V. Siva Rama Prasad, The number of $ k$-free divisors of an integer, Acta Arith. 17 (1971), 345-354. MR 0327697 (48:6039)
  • [15] -, The number of $ k$-free divisors of an integer. II, J. Reine Angew. Math. 276 (1975), 200-205. MR 0374058 (51:10258)
  • [16] E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford, 1951. MR 0046485 (13:741c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11N37, 11M26, 11M41

Retrieve articles in all journals with MSC: 11N37, 11M26, 11M41


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0947644-0
Keywords: Arithmetic functions, convolution method, Riemann's Hypothesis
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society