Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Approximating PA


Author: F. G. J. Wiid
Journal: Proc. Amer. Math. Soc. 103 (1988), 1192-1195
MSC: Primary 93B60; Secondary 13C99, 54C40, 93B25
DOI: https://doi.org/10.1090/S0002-9939-1988-0955007-7
MathSciNet review: 955007
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the ring of continuous real-valued functions on a compact Hausdorff space of dimension $ \leq 1$ is a BCS-ring. This result follows from a study of the preservation of the PA and BCS properties under certain ring-theoretic constructions.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Brewer, D. Katz and W. Ullery, Pole assignability in polynomial rings, power series rings and Prüfer domains, J. Algebra 106 (1987), 265-286. MR 878478 (88a:13006)
  • [2] M. L. J. Hautus, E. D. Sontag, New results on pole shifting for parametrized families of systems, J. Pure Appl. Algebra 40 (1986), 229-244. MR 836650 (87i:93050)
  • [3] S. Mardesic, On covering dimension and inverse limits of compact spaces, Illinois J. Math. 4 (1960), 278. MR 0116306 (22:7101)
  • [4] F. Minnaar, C. G. Naude, G. Naude and F. Wiid, Pole assignability of rings of low dimension, J. Pure Appl. Algebra (to appear). MR 941901 (89c:13023)
  • [5] R. G. Swan, Topological examples of projective modules, Trans. Amer. Math. Soc. 230 (1977), 201-234. MR 0448350 (56:6657)
  • [6] W. V. Vasconcelos and C. A. Weibel, BCS-rings (to appear). MR 949348 (89h:13015)
  • [7] F. Wiid, Noetherian rings of dimension 1 are pole assignable, J. Pure Appl. Algebra (to appear). MR 955618 (89h:13016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 93B60, 13C99, 54C40, 93B25

Retrieve articles in all journals with MSC: 93B60, 13C99, 54C40, 93B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0955007-7
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society