Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Exact embedding functors and left coherent rings


Authors: Kent R. Fuller and George Hutchinson
Journal: Proc. Amer. Math. Soc. 104 (1988), 385-391
MSC: Primary 16A89; Secondary 18E20
DOI: https://doi.org/10.1090/S0002-9939-1988-0962803-9
MathSciNet review: 962803
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ and $ S$ be rings with unit. Suppose $ P$ is a free $ R$-module on $ \beta $ generators, where $ \beta $ is an infinite cardinal number not smaller than the cardinality of $ R$, and $ T$ is the ring of endomorphisms $ \operatorname{End}{(_R}P)$.

Theorem. If $ R$ is left coherent and there exists an exact embedding functor $ F:R - \operatorname{Mod} \to S - \operatorname{Mod}$, then $ _SF{(R)_R}$ is a bimodule such that $ F{(R)_R}$ is faithfully flat.

Theorem. If $ F:R - \operatorname{Mod} \to S - \operatorname{Mod}$ is an exact embedding functor, then $ _R{P_T}$ is a bimodule such that $ _RP$ is a projective generator (inducing an exact embedding Hom functor from $ R - \operatorname{Mod}$ into $ T - \operatorname{Mod}$,) and $ _SF{(T)_T}$ is a bimodule such that $ F{(T)_T}$ is faithfully flat (inducing an exact embedding tensor product functor $ _SF(T){ \otimes _T}$ -- from $ T - \operatorname{Mod}$ into $ S - \operatorname{Mod}$.)

Theorem. There exists an exact embedding functor $ R - \operatorname{Mod} \to S - \operatorname{Mod}$ iff there exists an $ S$-module $ N$ and a unit-preserving ring monomorphism $ h:\operatorname{End}{(_R}P) \to \operatorname{End}{(_S}N)$ of their endomorphism rings, such that $ h$ preserves and reflects exact pairs of endomorphisms.


References [Enhancements On Off] (What's this?)

  • [1] F. Anderson and K. Fuller, Rings and categories of modules, Springer-Verlag, Berlin, Heidelberg and New York, 1974. MR 0417223 (54:5281)
  • [2] S. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260 (22:11017)
  • [3] P. Freyd, Abelian categories: An introduction to the theory of functors, Harper and Row, New York, 1964. MR 0166240 (29:3517)
  • [4] K. Fuller, Density and equivalence, J. Algebra 29 (1974), 528-550. MR 0374192 (51:10392)
  • [5] G. Hutchinson, Exact embedding functors between categories of modules, J. Pure Appl. Algebra 25 (1982), 107-111. MR 660390 (83k:16030)
  • [6] -, Addendum to "Exact embedding functors between categories of modules", J. Pure Appl. Algebra 45 (1987), 99-100. MR 884634 (88e:16064)
  • [7] B. Mitchell, Theory of categories, Academic Press, New York, 1965. MR 0202787 (34:2647)
  • [8] C. Watts, Intrinsic characterizations of some additive functors, Proc. Amer. Math. Soc. 11 (1960), 5-8. MR 0118757 (22:9528)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A89, 18E20

Retrieve articles in all journals with MSC: 16A89, 18E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0962803-9
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society