Applications of a new -theoretic theorem to soluble group rings

Authors:
P. H. Kropholler, P. A. Linnell and J. A. Moody

Journal:
Proc. Amer. Math. Soc. **104** (1988), 675-684

MSC:
Primary 16A27; Secondary 16A08, 16A34

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964842-0

MathSciNet review:
964842

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a ring and let be a soluble group. In this situation we shall give necessary and sufficient conditions for to have a right Artinian right quotient ring. In the course of this work, we shall also consider the Goldie rank problem for soluble groups and record an affirmative answer to the zero divisor conjecture for soluble groups.

**[1]**A. W. Chatters and C. R. Hajarnavis,*Rings with chain conditions*, Research Notes in Math., no. 44, Pitman, Boston, Mass., 1980. MR**590045 (82k:16020)****[2]**K. A. Brown,*On zero divisors in group rings*, Bull. London Math. Soc.**8**(1976), 251-256. MR**0414616 (54:2716)****[3]**-,*Artinian quotient rings of group rings*, J. Algebra**49**(1977), 63-80. MR**0460372 (57:366)****[4]**C. Chou,*Elementary amenable groups*, Illinois J. Math.**24**(1980), 396-407. MR**573475 (81h:43004)****[5]**E. C. Dade,*Group-graded rings and modules*, Math. Z.**174**(1980), 241-262. MR**593823 (82c:16028)****[6]**D. R. Farkas and R. L. Snider,*and Noetherian group rings*, J. Algebra**42**(1976), 192-198. MR**0422327 (54:10318)****[7]**J. A. Moody, Ph.D. Thesis, Columbia University, 1986.**[8]**-,*Induction theorems for infinite groups*, Bull. Amer. Math. Soc.**17**(1987), 113-116. MR**888884 (88g:18013)****[9]**-,*A Brauer induction theorem for**of certain infinite groups*, J. Algebra (to appear).**[10]**D. S. Passman,*Infinite group rings*, Dekker, New York, 1971. MR**0314951 (47:3500)****[11]**-,*Group rings, crossed products and Galois theory*, CBMS Regional Conf. Ser. in Math., no. 64, Amer. Math. Soc., Providence, R. I., 1986. MR**840467 (87e:16033)****[12]**S. Rosset,*The Goldie rank of virtually polycyclic groups*, The Brauer Group, Lecture Notes in Math., vol. 844, Springer-Verlag, Berlin, 1981, pp. 35-45. MR**611864 (82f:16010)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A27,
16A08,
16A34

Retrieve articles in all journals with MSC: 16A27, 16A08, 16A34

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964842-0

Keywords:
Group ring,
zero divisor conjecture,
Goldie rank,
quotient ring,
Grothendieck group

Article copyright:
© Copyright 1988
American Mathematical Society