A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations

Authors:
I. Lasiecka and R. Triggiani

Journal:
Proc. Amer. Math. Soc. **104** (1988), 745-755

MSC:
Primary 34G10; Secondary 35L10, 47A50, 47D05

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964851-1

MathSciNet review:
964851

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the solution operator

*group*of bounded operators on , and is a generally unbounded linear operator with being another reflexive Banach space (without loss of generality we take to be boundedly invertible). Let be given. We prove the following theorem: if is continuous , then in fact continuous , a lifting regularity theorem in the time variable. Moreover, we show by a parabolic example with nonhomogeneous term in the Dirichlet boundary conditions that the theorem fails to be true, if is merely a s.c. semigroup even if holomorphic. Applications of the theorem include

*mixed*hyperbolic problems, including second order scalar hyperbolic equations defined on an open bounded domain , with nonhomogeneous term of class acting in the Dirichlet or in the Neumann boundary conditions. In the former case, the theorem recovers the authors' original procedure which yielded

*optimal*regularity results for this dynamics [

**L-T.2**]; in the latter, the theorem improves upon results of Lions-Magenes [

**L-M.1**, vol. II]. Extension to is also studied.

**[C.1]**S. Chang, Ph. D. dissertation, Mathematics Department, Univ. of Florida, 1984.**[C-L.1]**S. Chang and I. Lasiecka,*Riccati equations for nonsymmetric and nondissipative hyperbolic systems with 𝐿₂-boundary controls*, J. Math. Anal. Appl.**116**(1986), no. 2, 378–414. MR**842807**, https://doi.org/10.1016/S0022-247X(86)80005-1**[DaP-L-T.1]**G. Da Prato, I. Lasiecka, and R. Triggiani,*A direct study of the Riccati equation arising in hyperbolic boundary control problems*, J. Differential Equations**64**(1986), no. 1, 26–47. MR**849662**, https://doi.org/10.1016/0022-0396(86)90069-0**[D-S.1]**N. Dunford and J. T. Schwartz,*Linear operators*. Part I, Interscience, New York, 1958.**[F-L-T.1]**F. Flandoli, I. Lasiecka and R. Triggiani,*Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli equations*, Ann. Mat. Pura Appl. (to appear).**[H.1]**Lop Fat Ho,*Observabilité frontière de l’équation des ondes*, C. R. Acad. Sci. Paris Sér. I Math.**302**(1986), no. 12, 443–446 (English, with French summary). MR**838598****[H-P.1]**Einar Hille and Ralph S. Phillips,*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR**0089373****[L.1]**J.-L. Lions,*Contrôle des systèmes distribués singuliers*, Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], vol. 13, Gauthier-Villars, Montrouge, 1983 (French). MR**712486****[L.2]**Jacques-Louis Lions,*Contrôlabilité exacte des systèmes distribués*, C. R. Acad. Sci. Paris Sér. I Math.**302**(1986), no. 13, 471–475 (French, with English summary). MR**838402**, https://doi.org/10.1007/BFb0007542**[L.3]**J.-L. Lions,*Optimal control of systems governed by partial differential equations.*, Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. MR**0271512****[L.4]**Jacques-Louis Lions,*Un résultat de régularité pour l’opérateur ∂²/∂𝑡²+Δ²*, Current topics in partial differential equations, Kinokuniya, Tokyo, 1986, pp. 247–260 (French). MR**1112149****[L-L-T.1]**I. Lasiecka, J.-L. Lions, and R. Triggiani,*Nonhomogeneous boundary value problems for second order hyperbolic operators*, J. Math. Pures Appl. (9)**65**(1986), no. 2, 149–192. MR**867669****[L-M.1]**J. L. Lions and E. Magenes,*Nonhomogeneous boundary value problems and applications*, vols. I, II, Springer-Verlag, Berlin and New York, 1972.**[L-T.1]**I. Lasiecka and R. Triggiani,*A cosine operator approach to modeling 𝐿₂(0,𝑇;𝐿₂(Γ))—boundary input hyperbolic equations*, Appl. Math. Optim.**7**(1981), no. 1, 35–93. MR**600559**, https://doi.org/10.1007/BF01442108**[L-T.2]**I. Lasiecka and R. Triggiani,*Regularity of hyperbolic equations under 𝐿₂(0,𝑇;𝐿₂(Γ))-Dirichlet boundary terms*, Appl. Math. Optim.**10**(1983), no. 3, 275–286. MR**722491**, https://doi.org/10.1007/BF01448390**[L-T.3]**I. Lasiecka and R. Triggiani,*Riccati equations for hyperbolic partial differential equations with 𝐿₂(0,𝑇;𝐿₂(Γ))-Dirichlet boundary terms*, SIAM J. Control Optim.**24**(1986), no. 5, 884–925. MR**854062**, https://doi.org/10.1137/0324054**[L-T.4]**-,*Uniform exponential energy decay of wave equation in a bounded region with**-feedback control in the Dirichlet boundary conditions*, J. Differential Equations**65**(1986), 340-390.**[L-T.5]**-,*Hyperbolic equations with nonhomogeneous Neumann boundary terms. Part*I:*Regularity*, preprint 1983.**[L-T.6]**-,*Sharp regularity results for hyperbolic equations of Neumann type*, 1987.**[L-T.7]**-,*Regularity theory for a class of Euler Bernoulli equations: a cosine operator approach*, Boll. Un. Mat. Ital. (to appear).**[L-T.8]**I. Lasiecka and R. Triggiani,*Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a nonconservative case*, SIAM J. Control Optim.**27**(1989), no. 2, 330–373. MR**984832**, https://doi.org/10.1137/0327018**[L-T.9]**-,*Infinite horizon quadratic cost problems for boundary control problems*, Proc. 20th CDC Conference, pp. 1005-1010, Los Angeles, December 1987.**[R.1]**Jeffrey Rauch,*\cal𝐿₂ is a continuable initial condition for Kreiss’ mixed problems*, Comm. Pure Appl. Math.**25**(1972), 265–285. MR**0298232**, https://doi.org/10.1002/cpa.3160250305**[R.2]**David L. Russell,*Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions*, SIAM Rev.**20**(1978), no. 4, 639–739. MR**508380**, https://doi.org/10.1137/1020095**[K.1]**Heinz-Otto Kreiss,*Initial boundary value problems for hyperbolic systems*, Comm. Pure Appl. Math.**23**(1970), 277–298. MR**0437941**, https://doi.org/10.1002/cpa.3160230304**[T.1]**Roberto Triggiani,*A cosine operator approach to modelling boundary input hyperbolic systems*, Optimization techniques (Proc. 8th IFIP Conf., Würzburg, 1977) Springer, Berlin, 1978, pp. 380–390. Lecture Notes in Control and Informat. Sci., Vol. 6. MR**0502082****[T.2]**-,*Exact boundary controllability on**for the wave equation with Dirichlet control acting on a portion of the boundary, and related problems*, Appl. Math. Optim. (to appear), Springer-Verlag Lecture Notes in Control Sciences, vol. 102, pp. 292-332, Proceedings of 3rd International Conference, Vorau, Austria, July 6-12, 1986.**[T.3]**R. Triggiani,*Wave equation on a bounded domain with boundary dissipation: an operator approach*, Operator methods for optimal control problems (New Orleans, La., 1986) Lecture Notes in Pure and Appl. Math., vol. 108, Dekker, New York, 1987, pp. 283–310. MR**920578****[W.1]**George Weiss,*Admissibility of unbounded control operators*, SIAM J. Control Optim.**27**(1989), no. 3, 527–545. MR**993285**, https://doi.org/10.1137/0327028

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34G10,
35L10,
47A50,
47D05

Retrieve articles in all journals with MSC: 34G10, 35L10, 47A50, 47D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0964851-1

Article copyright:
© Copyright 1988
American Mathematical Society