Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Semiconfluent maps and continua containing no $ n$-ods


Author: Eldon J. Vought
Journal: Proc. Amer. Math. Soc. 104 (1988), 1311-1314
MSC: Primary 54F20; Secondary 54C10, 54F50
DOI: https://doi.org/10.1090/S0002-9939-1988-0929435-X
MathSciNet review: 929435
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: J. F. Davis proved that the semiconfluent image of an atriodic continuum is atriodic and asked if this result could be generalized to $ n$-ods. In this paper the question is answered in the affirmative. It is proved that the semiconfluent image of a Hausdorff continuum containing no $ n$-ods must contain no $ n$-ods


References [Enhancements On Off] (What's this?)

  • [1] J. F. Davis, The preservation of atriodicity by semiconfluent mappings, Proc. Amer. Math. Soc. 100 (1987), 579-584. MR 891167 (88g:54057)
  • [2] E. E. Grace and E. J. Vought, Semiconfluent and weakly confluent images of tree-like and atriodic continuua, Fund. Math. 101 (1978), 151-158. MR 518350 (80c:54032)
  • [3] T. Maćkowiak, Semi-confluent mappings and their invariants, Fund. Math. 79 (1973), 251-264. MR 0321044 (47:9577)
  • [4] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 0150722 (27:709)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F20, 54C10, 54F50

Retrieve articles in all journals with MSC: 54F20, 54C10, 54F50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0929435-X
Keywords: Semiconfluent maps, $ n$-ods
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society