Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Young-Fenchel transform for convex functions


Author: Gerald Beer
Journal: Proc. Amer. Math. Soc. 104 (1988), 1115-1123
MSC: Primary 49A50; Secondary 26E25, 46B99, 54B20
DOI: https://doi.org/10.1090/S0002-9939-1988-0937844-8
MathSciNet review: 937844
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma (X)$ be the proper lower semicontinuous convex functions on a reflexive Banach space $ X$. We exhibit a simple Vietoris-type topology on $ \Gamma (X)$, compatible with Mosco convergence of sequences of functions, with respect to which the Young-Fenchel transform (conjugate operator) from $ \Gamma (X)$ to $ \Gamma ({X^*})$ is a homeomorphism. Our entirely geometric proof of the bicontinuity of the transform halves the length of Mosco's proof of sequential bicontinuity, and produces a stronger result for nonseparable spaces.


References [Enhancements On Off] (What's this?)

  • [1] H. Attouch, Variational convergence for functions and operators, Pitman Publishers, Boston, 1984. MR 773850 (86f:49002)
  • [2] G. Beer, On Mosco convergence of convex sets, Bull. Australian Math. Soc. 38 (1988), 239-253. MR 969914 (90a:46026)
  • [3] G. Beer, C. Himmelberg, K. Prikry and F. Van Vleck, The locally finite topology on $ {2^X}$, Proc. Amer. Math. Soc. 101 (1987), 168-172. MR 897090 (88f:54014)
  • [4] S. Francaviglia, A. Lechicki and S. Levi, Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), 347-370. MR 813603 (87e:54025)
  • [5] J. Giles, Convex analysis with application in differentation of convex functions, Research Notes in Math., vol. 58, Pitman, London, 1982. MR 650456 (83g:46001)
  • [6] R. Holmes, A course in optimization and best approximation, Lecture Notes in Math., vol. 257, Springer-Verlag, New York, 1972. MR 0420367 (54:8381)
  • [7] J. Joly, Une famille de topologies sur l'ensemble des fonctions convexes pour lesquelles la polarité est bicontinue, J. Math. Pures Appl. 52 (1973), 421-441. MR 0500129 (58:17826)
  • [8] E. Klein and A. Thompson, Theory of correspondences, Wiley, Toronto, 1984. MR 752692 (86a:90012)
  • [9] K. Kuratowski, Topology, vol. 1, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [10] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. MR 0042109 (13:54f)
  • [11] -, Selected selection theorems, Amer. Math. Monthly 63 (1956), 233-238. MR 1529282
  • [12] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math. 3 (1969), 510-585. MR 0298508 (45:7560)
  • [13] -, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518-535. MR 0283586 (44:817)
  • [14] Y. Sonntag, Convergence au sens de Mosco; théorie et applications à l'approximation des solutions d'inéquations, Thèse d'Etat, Université de Provence, Marseille, 1982.
  • [15] D. Walkup and R. Wets, Continuity of some convex-cone valued mappings, Proc. Amer. Math. Soc. 18 (1967), 229-235. MR 0209806 (35:702)
  • [16] R. Wijsman, Convergence of sequences of convex sets, cones, and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32-45. MR 0196599 (33:4786)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49A50, 26E25, 46B99, 54B20

Retrieve articles in all journals with MSC: 49A50, 26E25, 46B99, 54B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0937844-8
Keywords: Convex function, conjugate convex function, Young-Fenchel transform, Mosco convergence, Mosco topology, hyperspace
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society