Comparison theorems for eigenvalue problems for th order differential equations

Authors:
Darrel Hankerson and Allan Peterson

Journal:
Proc. Amer. Math. Soc. **104** (1988), 1204-1211

MSC:
Primary 34B25; Secondary 34C10, 47B55

DOI:
https://doi.org/10.1090/S0002-9939-1988-0946624-9

MathSciNet review:
946624

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a comparison theorem for eigenvalues for a -conjugate boundary value problem for the systems and , where and are continuous matrix functions. We assume that the corresponding scalar equation is -disconjugate for . A special case of this is when is disconjugate; our results are new even in this case.

**[1]**K. Deimling,*Nonlinear functional analysis*, Springer-Verlag, 1985. MR**787404 (86j:47001)****[2]**R. D. Gentry and C C. Travis,*Comparison of eigenvalues associated with linear differential equations of arbitrary order*, Trans. Amer. Math. Soc.**223**(1976), 167-179. MR**0425241 (54:13198)****[3]**D. Hankerson and A. Peterson,*Comparison of eigenvalues for focal point problems for**th order difference equations*, (submitted).**[4]**M. S. Keener and C. C. Travis,*Positive cones and focal points for a class of**th order differential equations*, Trans. Amer. Math. Soc**237**(1978), 331-351. MR**479377 (80i:34050)****[5]**-,*Sturmian theory for a class of nonselfadjoint differential systems*, Ann. Mat. Pura Appl.**123**(1980), 247-266. MR**581932 (81g:34035)****[6]**M. A. Krasnosel'skiĭ,*Positive solutions of operator equations*, Fizmatgiz, Moscow, 1962; English transl., Noordhoff, Groningen, 1964. MR**0181881 (31:6107)****[7]**K. Kreith,*A class of hyperbolic focal point problems*, Hiroshima Math. J.**14**(1984), 203-210. MR**750397 (85h:35132)****[8]**A. Ju. Levin,*Distribution of the zeros of solutions of a linear differential equation*, Soviet Math. Dokl.**5**(1964), 818-821. MR**0164079 (29:1378)****[9]**A. Peterson,*On the sign of Green's functions*, J. Differential Equations**21**(1976), 167-178. MR**0404763 (53:8563)****[10]**K. Schmitt and H. L. Smith,*Positive solutions and conjugate points for systems of differential equations*, Nonlinear Anal.**2**(1978), 93-105. MR**512658 (80a:34033)****[11]**H. Smith,*A note on disconjugacy of second order systems*, Pacific J. Math.**89**(1980), 447-452. MR**599132 (82d:34042)****[12]**E. Tomastik,*Comparison theorems for second order nonselfadjoint differential systems*, SIAM J. Math. Anal.**14**(1983), 60-65. MR**686235 (85d:34041)****[13]**-,*Comparison theorems for conjugate points of**th order nonselfadjoint differential equations*, Proc. Amer. Math. Soc.**96**(1986), 437-442. MR**822435 (87d:34052)****[14]**C. C. Travis,*Comparison of eigenvalues for linear differential equations of order*, Trans. Amer. Math. Soc.**177**(1973), 363-374. MR**0316808 (47:5356)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34B25,
34C10,
47B55

Retrieve articles in all journals with MSC: 34B25, 34C10, 47B55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0946624-9

Keywords:
Comparison theorem,
boundary value problem,
-positive operator,
disconjugacy

Article copyright:
© Copyright 1988
American Mathematical Society