Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Comparison theorems for eigenvalue problems for $ n$th order differential equations


Authors: Darrel Hankerson and Allan Peterson
Journal: Proc. Amer. Math. Soc. 104 (1988), 1204-1211
MSC: Primary 34B25; Secondary 34C10, 47B55
DOI: https://doi.org/10.1090/S0002-9939-1988-0946624-9
MathSciNet review: 946624
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a comparison theorem for eigenvalues for a $ (k,n - k)$-conjugate boundary value problem for the systems $ {( - 1)^{n - k}}Ly = \lambda P(t)y$ and $ {( - 1)^{n - k}}Lz = \Lambda Q(t)z$, where $ P(t)$ and $ Q(t)$ are continuous $ m \times m$ matrix functions. We assume that the corresponding scalar equation $ Lx = 0$ is $ (j,n - j)$-disconjugate for $ k - 1 \leq j \leq n - 1$. A special case of this is when $ Lx = 0$ is disconjugate; our results are new even in this case.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34B25, 34C10, 47B55

Retrieve articles in all journals with MSC: 34B25, 34C10, 47B55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0946624-9
Keywords: Comparison theorem, boundary value problem, $ {u_0}$-positive operator, disconjugacy
Article copyright: © Copyright 1988 American Mathematical Society