Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Cofinal families of compacta in separable metric spaces

Author: Fons van Engelen
Journal: Proc. Amer. Math. Soc. 104 (1988), 1271-1273
MSC: Primary 54H05
MathSciNet review: 969060
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ X$ is a $ \Pi _1^1$-set, then the family of compact subsets of $ X$ contains a cofinal (w.r.t. inclusion) subset of cardinality $ {\mathbf{d}}$; the same is true if $ X$ is $ \Pi _3^1$, under strong set-theoretic hypotheses.

References [Enhancements On Off] (What's this?)

  • [1] E. K. van Douwen, The integers and topology, Handbook of Set Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111-167. MR 776622 (87f:54008)
  • [2] F. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI Tract 27, 1986. MR 851765 (87j:54058)
  • [3] R. Engelking, General topology, PWN, Warszawa, 1977. MR 0500780 (58:18316b)
  • [4] K. Kuratowski, Topology I, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [5] N. Luzin and W. Sierpiñski, Sur quelques propriétés des ensembles (A), Bull. Int. Acad. Sci. Cracovie Série A Sci. Math, (1918), 35-48.
  • [6] Y. Moschovakis, Descriptive set theory, North-Holland, Amsterdam, 1980. MR 561709 (82e:03002)
  • [7] J. Steel, Analytic sets and Borel isomorphisms, Fund. Math. 108 (1980), 83-88. MR 594307 (82b:03091)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H05

Retrieve articles in all journals with MSC: 54H05

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society