Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Meromorphic functions on a compact Riemann surface and associated complete minimal surfaces


Author: Kichoon Yang
Journal: Proc. Amer. Math. Soc. 105 (1989), 706-711
MSC: Primary 53A10; Secondary 30F10
DOI: https://doi.org/10.1090/S0002-9939-1989-0953749-1
MathSciNet review: 953749
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that given any meromorphic function $ f$ on a compact Riemann surface $ M'$ there exists another meromorphic function $ g$ on $ M'$ such that $ \left\{ {df,g} \right\}$ is the Weierstrass pair defining a complete conformal minimal immersion of finite total curvature into Euclidean $ 3$-space defined on $ M'$ punctured at a finite set of points. As corollaries we obtain i) any compact Riemann surface can be immersed in Euclidean $ 3$-space as in the above with at most $ 4p + 1$ punctures, where $ p$ is the genus of the Riemann surface; ii) any hyperelliptic Riemann surface of genus $ p$ can be so immersed with at most $ 3p + 4$ punctures.


References [Enhancements On Off] (What's this?)

  • [BC] J. L. Barbosa and A. G. Colares, Minimal surfaces in $ {\mathbb{R}^3}$, Lecture Notes in Math, Springer-Verlag, New York, 1986.
  • [CG] C. C. Chen and F. Gackstatter, Elliptische und hyperelliptische Funktionen und vollständige Minimalflächen vom Enneperschen Typ, Math. Ann. 259 (1982), 359-370. MR 661204 (84d:53005)
  • [CO] S. S. Chern and R. Osserman, Complete minimal surfaces in Euclidean $ n$-space, J. Analyse Math. 19 (1967), 15-34. MR 0226514 (37:2103)
  • [GK] F. Gackstatter and R. Kunert, Konstruktion vollständiger Minimalflächen von endlicher Gesamtkrümmung, Arch. Rational Mech. Anal. 65 (1977), 289-297. MR 0448264 (56:6573)
  • [HM] D. Hoffman and W. Meeks III, Complete embedded minimal surfaces of finite total curvature, Bull. Amer. Math. Soc. 12 (1985), 134-136. MR 766971 (86j:53011)
  • [KS] T. Klotz and L. Sario, Existence of complete minimal surfaces of arbitrary connectivity and genus, Proc. Nat. Acad. Sci. 54 (1965), 42-44. MR 0178408 (31:2665)
  • [L] H. B. Lawson, Jr., Lectures on minimal submanifolds, Publish or Perish, Berkeley, 1980.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A10, 30F10

Retrieve articles in all journals with MSC: 53A10, 30F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0953749-1
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society