Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Splitting of geodesics in homology classes


Author: Steven Zelditch
Journal: Proc. Amer. Math. Soc. 105 (1989), 1015-1019
MSC: Primary 58F17; Secondary 53C22
DOI: https://doi.org/10.1090/S0002-9939-1989-0946640-8
MathSciNet review: 946640
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a Chebotarev density theorem for closed geodesies in a fixed homology class on a compact hyperbolic surface. The theorem (and its proof) combines some work of Adachi-Sunada and Phillips-Sarnak.


References [Enhancements On Off] (What's this?)

  • [AS] Adachi-Sunada, Geodesics in homology classes (preprint).
  • [PS] R. Phillips and P. Sarnak, Geodesics in homology classes, Duke Math. J. 55 (1987). MR 894581 (88g:58151)
  • [Sa] P. Sarnak, Thesis, Stanford University, 1980.
  • [Su$ _{1}$] T. Sunada, Geodesic flows and geodesic random walks, Advanced Studies in Pure Math. 3, (K. Shiohama, editor), North-Holland, New York, 1984. MR 758647 (86i:58104)
  • [Su$ _{2}$] T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. 121 (1985), 169-186. MR 782558 (86h:58141)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F17, 53C22

Retrieve articles in all journals with MSC: 58F17, 53C22


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0946640-8
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society