Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Existence of nonnegative solutions of a semilinear equation at resonance with linear growth


Author: Jairo Santanilla
Journal: Proc. Amer. Math. Soc. 105 (1989), 963-971
MSC: Primary 34C15; Secondary 34B15, 47H15
DOI: https://doi.org/10.1090/S0002-9939-1989-0964462-9
MathSciNet review: 964462
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A coincidence degree result is established to study sufficient conditions for the existence of nonnegative solutions of a semilinear equation at resonance in which the nonlinearity has at most linear growth. Nonnegative solutions to some boundary value problems are obtained to illustrate the theory.


References [Enhancements On Off] (What's this?)

  • [1] A. Cañada and P. Martinez-Amores, Solvability of some operator equations and periodic solutions of nonlinear functional differential equations, J. Differential Equations 49 (1983), 415-429. MR 715694 (86d:47069)
  • [2] A. Castro and R. Shivaji, Nonnegative solution for a class of nonpositone problems, preprint. MR 943804 (90m:34040)
  • [3] L. Cesari and R. Kannan, Solutions of nonlinear hyperbolic equations at resonance, Nonlinear Analysis, TMA 6 (1982), 751-805. MR 671720 (84a:35176)
  • [4] L. Cesari, R. Kannan and J. Schuur Edit., Nonlinear functional analysis and differential equations, Dekker, New York, 1976. MR 0477808 (57:17314)
  • [5] L. Cesari and R. Kannan, Qualitative study of a class of nonlinear boundary value problems at resonance, J. Differential Equations 56 (1985), 63-81. MR 772121 (86g:47083)
  • [6] -, An abstract theorem at resonance, Proc. Amer. Math. Soc. 63 (1977), 221-225. MR 0448180 (56:6489)
  • [7] -, Existence of solutions of a nonlinear differential equation, Proc. Amer. Math. Soc. 4 (1983), 605-613. MR 702284 (85d:34017)
  • [8] R. E. Gaines and J. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Math., vol. 568, Springer-Verlag, Berlin, 1977. MR 0637067 (58:30551)
  • [9] R. Gaines and J. Santanilla, A coincidence theorem in convex sets with applications to periodic soltuions of ordinary differential equations, Rocky Mountain J. Math. 12 (1982), 669-678. MR 683861 (84c:47061)
  • [10] J. A. Gatica and H. Smith, Fixed point techniques in a cone with application, J. Math. Anal. Appl. 61 (1977), 58-71. MR 0513057 (58:23797)
  • [11] A. Granas, On a certain class of nonlinear mappings in Banach spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 9 (1957), 867-871.
  • [12] G. B. Gustafson and K. Schmitt, Nonzero solutions of boundary value problems for second order ordinary and delay-differential equations, J. Math. Anal. Appl. 12 (1972), 129-147. MR 0346234 (49:10959)
  • [13] R. Kannan and V. Lakshmikantham, Periodic solutions of nonlinear boundary value problems, Nonlinear Analysis, TMA 6 (1982), 1-10. MR 647584 (83d:34031)
  • [14] R. Kannan and J. Locker, Nonlinear boundary value problems and operators $ T{T^ * }$, J. Differential Equations 28 (1978), 60-103. MR 0477918 (57:17418)
  • [15] R. Kannan, J. J. Nieto and M. B. Ray, A class of nonlinear boundary value problems without Landesman-Lazer condition, J. Math. Anal. Appl. 105 (1985), 1-11. MR 773569 (86c:34031)
  • [16] R. Kannan, J. J. Nieto and V. Lakshmikantham, Sufficient conditions for existence of solutions of nonlinear boundary value problems at renonance, Nonlinear Anal. TMA 7 (1983), 1013-1020. MR 713210 (85j:47064a)
  • [17] M. A. Krasnosel' skii, Positive solutions of operator equations, Noordhoff, Groningen, 1964.
  • [18] J. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conference Series in Math. no. 40, Amer. Math. Soc., Providence, R.I. 1979, 1981. MR 525202 (80c:47055)
  • [19] J. Mawhin and K. P. Rybakowski, Continuation theorems for semi-linear equations in Banach spaces, preprint.
  • [20] J. Nieto, Existence of solutions in a convex set for nonlinear alternative problems, Proc. Amer. Math. Soc. 94 (1985), 433-436. MR 787888 (86d:47006)
  • [21] E. Rothe, Zur Theorie der topologischer Ordnung und dere Vektorfelder in Banachsen Raumen, Compositio Math. 5 (1937), 177-197.
  • [22] J. Santanilla, Some coincidence theorem in wedges, cones and convex sets, J. Math. Anal. Appl. 105 (1985), 357-371. MR 778471 (86h:47092)
  • [23] -, Nonnegative solutions to boundary value problems for nonlinear first and second order ordinary differential equations, J. Math. Anal. Appl. 126 (1987), 397-408. MR 900756 (88h:34014)
  • [24] J. Mawhin, Landesman-Lazer's type problems for nonlinear equations, Conf. Sem. Mat. Univ. Bari, (1977), No. 147. MR 0477923 (57:17423)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C15, 34B15, 47H15

Retrieve articles in all journals with MSC: 34C15, 34B15, 47H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0964462-9
Keywords: Coincidence degree, semilinear equations at resonance, boundary value problems
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society