Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A dichromatic polynomial for weighted graphs and link polynomials


Author: Lorenzo Traldi
Journal: Proc. Amer. Math. Soc. 106 (1989), 279-286
MSC: Primary 57M25; Secondary 05C15, 57M15
DOI: https://doi.org/10.1090/S0002-9939-1989-0955462-3
MathSciNet review: 955462
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A dichromatic polynomial for weighted graphs is presented. The Kauffman bracket of a signed graph, an invariant inspired by the Jones polynomial of a link in three-space, is shown to be essentially an evaluation of this dichromatic polynomial, as are the homfly polynomials of certain particular types of links.


References [Enhancements On Off] (What's this?)

  • [1] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246. MR 776477 (86e:57007)
  • [2] F. Jaeger, On Tutte polynomials and link polynomials, Proc. Amer. Math. Soc. 103 (1988), 647-654. MR 943099 (89i:57004)
  • [3] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407. MR 899057 (88f:57006)
  • [4] -, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), 195-242. MR 935433 (89d:57005)
  • [5] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), 187-194. MR 895570 (88m:57010)
  • [6] -, On invariants of graphs with applications to knot theory, Trans. Amer. Math. Soc. (to appear). MR 930077 (89k:57016)
  • [7] T. Przytycka and J. Przytycki, Signed dichromatic graphs of oriented link diagrams and matched diagrams, notes, Univ. of Toronto; 1987.
  • [8] M. B. Thistlethwaite, A spanning tree expansion for the Jones polynomial, Topology 26 (1987), 297-309. MR 899051 (88h:57007)
  • [9] W. T. Tutte, Graph theory, Cambridge Univ. Press, Cambridge, 1984.
  • [10] N. White (ed.), Theory of matroids, Cambridge Univ. Press, Cambridge, 1986.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M25, 05C15, 57M15

Retrieve articles in all journals with MSC: 57M25, 05C15, 57M15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0955462-3
Keywords: Weighted graphs, dichromatic polynomials, classical links, bracket polynomials
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society