Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A strong Parrott theorem

Authors: Ciprian Foias and Allen Tannenbaum
Journal: Proc. Amer. Math. Soc. 106 (1989), 777-784
MSC: Primary 47A20; Secondary 47B35
MathSciNet review: 972228
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we discuss a strengthened version of a theorem due to Parrott [8] in operator dilation theory. We relate our result to the one-step extension procedure of Adamjan-Arov-Krein [1].

References [Enhancements On Off] (What's this?)

  • [1] V. M. Adamjan, D. Z. Arov, and M. G. Krein, Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem, Math. USSR Sbornik 15 (1971), 31-73. MR 0298453 (45:7505)
  • [2] C. Davis, A factorization of an arbitrary $ m \times n$ contractive operator matrix, in Toeplitz centenial, edited by Israel Gohberg, Operator Theory: Advances and Applications 4 (1982), Birkhauser, 217-232. MR 669910 (84c:47011)
  • [3] C. Davis, W. M. Kahan, and H. F. Weinberger, Norm-preserving dilations and their applications to optimal error bounds, SIAM J. Numerical Anal. 19 (1982), 445-469. MR 656462 (84b:47010)
  • [4] H. Dym and I. Gohberg, A maximum entropy principle for contractive interpolants, J. Functional Analysis 65 (1986), 83-125. MR 819176 (87h:47065)
  • [5] C. Foias and A. Frazho, Redheffer products and lifting contractions on Hilbert space, J. Operator Theory 11 (1984), 193-196. MR 739802 (85i:47009)
  • [6] C. Foias and A. Tannenbaum, On the singular values of the four block operator and certain generalized interpolation problems, invited paper for a volume dedicated to Professor Mischa Cotlar on his seventy-fifth birthday, 1988.
  • [7] B. A. Francis, A course in $ {\mathcal{H}_\infty }$ control theory, Lecture Notes in Control and Information Sciences, vol. 88, Springer-Verlag, 1987. MR 932459 (89i:93002)
  • [8] S. Parrott, On the quotient norm and the Sz. Nagy-Foias lifting theorem, J. Functional Analysis 30 (1978), 311-328. MR 518338 (81h:47006)
  • [9] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, 1970. MR 0275190 (43:947)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A20, 47B35

Retrieve articles in all journals with MSC: 47A20, 47B35

Additional Information

Keywords: Parrott's theorem, dilation theory, one-step extension, Hankel operator, interpolation theory
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society