Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Marczewski sets, measure and the Baire property. II

Author: John T. Walsh
Journal: Proc. Amer. Math. Soc. 106 (1989), 1027-1030
MSC: Primary 28A05; Secondary 26A21, 54H05
MathSciNet review: 967489
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An example is given (in ZFC) of a hereditarily Marczewski set which does not have the Baire property in the wise sense and is not Lebesgue measurable. It is then shown that Marczewski sets, which do not satisfy the c.c.c., possess a hull property.

References [Enhancements On Off] (What's this?)

  • [1] J. B. Brown and G. V. Cox, Classical theory of totally imperfect spaces, Real Anal. Exchange 7 (1981/82), no. 2, 185–232. MR 657320
  • [2] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR 0217751
  • [3] John C. Oxtoby, Measure and category, 2nd ed., Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York-Berlin, 1980. A survey of the analogies between topological and measure spaces. MR 584443
  • [4] W. Sierpiński, Sur un problèm concernant les familles d'ensembles parfaits, Fund. Math. 31 (1938), 1-3.
  • [5] E. Szpilrajn-Marczewski, Sur certains invariants de l'opération (A), Fund. Math. 21 (1933), 229-235.
  • [6] -, Sur une classe de fonctions de M. Sierpinski et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34.
  • [7] John Thomas Walsh, Marczewski sets, measure and the Baire property, Fund. Math. 129 (1988), no. 2, 83–89. MR 959434,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A05, 26A21, 54H05

Retrieve articles in all journals with MSC: 28A05, 26A21, 54H05

Additional Information

Keywords: Marczewski sets, Baire property, measurability, continuum hypothesis, operation $ (A)$, c.c.c., hull
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society