Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


The Cauchy transform on bounded domains

Authors: J. M. Anderson and A. Hinkkanen
Journal: Proc. Amer. Math. Soc. 107 (1989), 179-185
MSC: Primary 30E20; Secondary 47G05
MathSciNet review: 972226
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that $ f$ is in $ {L^2}(\Delta )$ where $ \Delta $ is the unit disk, and that $ f = 0$ outside $ \Delta $. We show that then the Cauchy transform $ \mathcal{C}\,f$ of $ f$, when restricted to $ \Delta $, satisfies $ \vert\vert\mathcal{C}\,f\vert{\vert _2} \leq (2/\alpha )\vert\vert f\vert{\vert _2}$, where $ \alpha \approx 2.4048$ is the smallest positive zero of the Bessel function $ {J_0}$. This inequality is sharp.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30E20, 47G05

Retrieve articles in all journals with MSC: 30E20, 47G05

Additional Information

PII: S 0002-9939(1989)0972226-5
Article copyright: © Copyright 1989 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia