Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homogeneous spacetimes of zero curvature


Authors: Della C. Duncan and Edwin C. Ihrig
Journal: Proc. Amer. Math. Soc. 107 (1989), 785-795
MSC: Primary 53C50; Secondary 53C30
DOI: https://doi.org/10.1090/S0002-9939-1989-0975639-0
MathSciNet review: 975639
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the following we show the only possible flat, connected, incomplete homogeneous spacetimes are $ H / \Delta $ where $ H = \left\{ {\upsilon \in {{\mathbf{R}}^n}\left\vert {g\left( {\upsilon ,N} \right) > 0} \right.} \right\},N$ is a null vector, and $ \Delta $ is a discrete subgroup of translations.


References [Enhancements On Off] (What's this?)

  • [A] J. Adams, Lectures on Lie groups, The University of Chicago Press, Chicago and London, 1969. MR 0252560 (40:5780)
  • [Au] L. Auslander, Simply transitive groups of affine motions, Amer. J. of Math. (4) 99 (1977), 809-826. MR 0447470 (56:5782)
  • [BW] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Princeton University Press, Princeton, New Jersey, 1980. MR 554917 (83c:22018)
  • [F] D. Fried, Flat spacetimes, J. Diff. Geo. 26 (1987), 285-296. MR 910014 (89a:53074)
  • [FGH] D. Fried, W. Goldman and M. Hirsch, Affine manifolds with nilpotent holonomy, Commentarii Mathematici Helvetici 56 (1981), 487-523. MR 656210 (83h:53062)
  • [GH] W. Goldman and M. Hirsch, Affine manifolds and orbits of algebraic groups, Trans. of the Amer. Math. Soc. 295 (1986), 175-198. MR 831195 (88c:57025)
  • [HM] G. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. of Math., 6 (1962), 367-401. MR 0147577 (26:5092)
  • [M] J. Milnor, Curvatures on left-invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293-329. MR 0425012 (54:12970)
  • [R] M. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, Berlin and New York, 1972. MR 0507234 (58:22394a)
  • [S] J. Scheuneman, Translations in certain groups of affine motions, Proceedings of the Amer. Math. Soc. 47 (1975), 223-228. MR 0372120 (51:8337)
  • [Wa] Z. Wan, Lie algebras, Pergammon Press, New York, 1975. MR 0412238 (54:365)
  • [W1] J. Wolf, Homogeneous manifolds of zero curvature, Trans. of the Amer. Math. Soc. 104 (1962), 462-469. MR 0140050 (25:3474)
  • [W2] -, Isotropic manifolds of indefinite metric, Commentarii Mathematici Helvetici 39 (1964), 21-64. MR 0179744 (31:3987)
  • [W3] -, Spaces of constant curvature, McGraw-Hill, New York, 1967. MR 0217740 (36:829)
  • [Y] K. Yagi, On compact homogeneous affine manifolds, Osaka J. of Math. 7 (1970), 457-475. MR 0284943 (44:2167)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C50, 53C30

Retrieve articles in all journals with MSC: 53C50, 53C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0975639-0
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society