Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Homogeneous spacetimes of zero curvature


Authors: Della C. Duncan and Edwin C. Ihrig
Journal: Proc. Amer. Math. Soc. 107 (1989), 785-795
MSC: Primary 53C50; Secondary 53C30
DOI: https://doi.org/10.1090/S0002-9939-1989-0975639-0
MathSciNet review: 975639
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the following we show the only possible flat, connected, incomplete homogeneous spacetimes are $ H / \Delta $ where $ H = \left\{ {\upsilon \in {{\mathbf{R}}^n}\left\vert {g\left( {\upsilon ,N} \right) > 0} \right.} \right\},N$ is a null vector, and $ \Delta $ is a discrete subgroup of translations.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C50, 53C30

Retrieve articles in all journals with MSC: 53C50, 53C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0975639-0
Article copyright: © Copyright 1989 American Mathematical Society