Weakly almost periodic elements in of a locally compact group

Authors:
Anthony To Ming Lau and James C. S. Wong

Journal:
Proc. Amer. Math. Soc. **107** (1989), 1031-1036

MSC:
Primary 43A15; Secondary 22D25, 43A07

DOI:
https://doi.org/10.1090/S0002-9939-1989-0991701-0

MathSciNet review:
991701

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a locally compact abelian group with dual group acting on by pointwise multiplication. We show that if contains a nonzero element such that is relatively compact in the weak (or norm) topology of , then is discrete. In this case is relatively compact in the weak or norm topology of if and only if vanishes at infinity. A related result when acts on the von Neumann algebra is also determined.

**[1]**R. B. Burckel,*Weakly almost periodic functions on semigroups*, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR**0263963****[2]**Paul Civin and Bertram Yood,*The second conjugate space of a Banach algebra as an algebra*, Pacific J. Math.**11**(1961), 847–870. MR**0143056****[3]**Henry W. Davis,*An elementary proof that Haar measurable almost periodic functions are continuous*, Pacific J. Math.**21**(1967), 241–248. MR**0212121****[4]**J. Duncan and S. A. R. Hosseiniun,*The second dual of a Banach algebra*, Proc. Roy. Soc. Edinburgh Sect. A**84**(1979), no. 3-4, 309–325. MR**559675**, https://doi.org/10.1017/S0308210500017170**[5]**N. Dunford and J. T. Schwartz,*Linear operators*I, Interscience, 1958.**[6]**Pierre Eymard,*L’algèbre de Fourier d’un groupe localement compact*, Bull. Soc. Math. France**92**(1964), 181–236 (French). MR**0228628****[7]**R. R. Goldberg and A. B. Simon,*Characterization of some classes of measures*, Acta Sci. Math. (Szeged)**27**(1966), 157–161. MR**0209772****[8]**C. C. Graham, A. T. Lau, and M. Leinert,*Continuity of translation in the dual of**and related spaces*, Trans. Amer. Math. Soc. (to appear).**[9]**E. Hewitt and K. Ross,*Abstract harmonic analysis*I, Springer-Verlag New York, 1963.**[10]**Gregory A. Hively,*The representation of norm-continuous multipliers on 𝐿^{∞}-spaces*, Trans. Amer. Math. Soc.**184**(1973), 343–353. MR**0346425**, https://doi.org/10.1090/S0002-9947-1973-0346425-2**[11]**A. Ionescu Tulcea and C. Ionescu Tulcea,*On the existence of a lifting commuting with the left translations of an arbitrary locally compact group*, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 63–97. MR**0212122****[12]**Anthony To Ming Lau,*Closed convex invariant subsets of 𝐿_{𝑝}(𝐺)*, Trans. Amer. Math. Soc.**232**(1977), 131–142. MR**0477604**, https://doi.org/10.1090/S0002-9947-1977-0477604-5**[13]**Anthony To Ming Lau,*The second conjugate algebra of the Fourier algebra of a locally compact group*, Trans. Amer. Math. Soc.**267**(1981), no. 1, 53–63. MR**621972**, https://doi.org/10.1090/S0002-9947-1981-0621972-9**[14]**Anthony To Ming Lau and Viktor Losert,*Weak*-closed complemented invariant subspaces of 𝐿_{∞}(𝐺) and amenable locally compact groups*, Pacific J. Math.**123**(1986), no. 1, 149–159. MR**834144****[15]**Ali Ülger,*Continuity of weakly almost periodic functionals on 𝐿¹(𝐺)*, Quart. J. Math. Oxford Ser. (2)**37**(1986), no. 148, 495–497. MR**868624**, https://doi.org/10.1093/qmath/37.4.495**[16]**N. J. Young,*The irregularity of multiplication in group algebras*, Quart J. Math. Oxford Ser. (2)**24**(1973), 59–62. MR**0320756**, https://doi.org/10.1093/qmath/24.1.59

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
43A15,
22D25,
43A07

Retrieve articles in all journals with MSC: 43A15, 22D25, 43A07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0991701-0

Article copyright:
© Copyright 1989
American Mathematical Society