A class of simple Lie algebras of characteristic three

Author:
Gordon Brown

Journal:
Proc. Amer. Math. Soc. **107** (1989), 901-905

MSC:
Primary 17B50; Secondary 17B20

MathSciNet review:
993742

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show the existence of a certain infinite class of simple Lie algebras of characteristic three. These algebras, although of neither classical nor Cartan type, resemble algebras of Cartan type in their relationship to each other.

**[1]**Richard E. Block and Robert Lee Wilson,*Classification of the restricted simple Lie algebras*, J. Algebra**114**(1988), no. 1, 115–259. MR**931904**, 10.1016/0021-8693(88)90216-5**[2]**Gordon Brown,*Properties of a 29-dimensional simple Lie algebra of characteristic three*, Math. Ann.**261**(1982), no. 4, 487–492. MR**682662**, 10.1007/BF01457452**[3]**Gordon Brown,*Freudenthal triple systems of characteristic three*, Algebras Groups Geom.**1**(1984), no. 4, 399–441. MR**785425****[4]**John R. Faulkner,*A construction of Lie algebras from a class of ternary algebras*, Trans. Amer. Math. Soc.**155**(1971), 397–408. MR**0294424**, 10.1090/S0002-9947-1971-0294424-X**[5]**Marguerite Frank,*A new simple Lie algebra of characteristic three*, Proc. Amer. Math. Soc.**38**(1973), 43–46. MR**0314924**, 10.1090/S0002-9939-1973-0314924-0**[6]**A. I. Kostrikin,*A parametric family of simple Lie algebras*, Izv. Akad. Nauk SSSR Ser. Mat.**34**(1970), 744–756 (Russian). MR**0274539****[7]**Robert Lee Wilson,*Classification of generalized Witt algebras over algebraically closed fields*, Trans. Amer. Math. Soc.**153**(1971), 191–210. MR**0316523**, 10.1090/S0002-9947-1971-0316523-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
17B50,
17B20

Retrieve articles in all journals with MSC: 17B50, 17B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0993742-6

Article copyright:
© Copyright 1989
American Mathematical Society