Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Two classes of Fréchet-Urysohn spaces


Author: Alan Dow
Journal: Proc. Amer. Math. Soc. 108 (1990), 241-247
MSC: Primary 54E35; Secondary 03E35, 03E75, 54A35
MathSciNet review: 975638
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Arhangel'skii introduced five classes of spaces, $ {\alpha _i}$-spaces $ \left( {i < 5} \right)$, which are important in the study of products of Fréchet-Urysohn spaces. For each $ i < 5$, each $ {\alpha _i}$-space is an $ {\alpha _{i + 1}}$-space and it follows from the continuum hypothesis that there are countable $ {\alpha _{i + 1}}$-spaces which are not $ {\alpha _i}$-spaces. A $ v$-space ($ w$-space) is a Fréchet-Urysohn $ {\alpha _1}$-space ( $ {\alpha _2}$-space). We show that there is a model of set theory in which each $ {\alpha _2}$-space ($ w$-space) is an $ {\alpha _1}$-space ($ v$-space).


References [Enhancements On Off] (What's this?)

  • [A1] A. V. Arhangel′skiĭ, Frequency spectrum of a topological space and classification of spaces, Dokl. Akad. Nauk SSSR 206 (1972), 265–268 (Russian). MR 0394575
  • [A2] -, The frequency spectrum of a topological space and the product operation, Trudy Mosk. Mat. Obs. 40 (1979) = Transl. Moscow Math. Soc. (1981), Issue 2, 163-200.
  • [DS] A. Dow and J. Steprans.
  • [G] Gary Gruenhage, Infinite games and generalizations of first-countable spaces, General Topology and Appl. 6 (1976), no. 3, 339–352. MR 0413049
  • [L] Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 0422027
  • [LNy] R. Levy and P. Nyikos, Families in $ \beta \omega $ whose union is regular open, preprint.
  • [N] Tsugunori Nogura, A counterexample for a problem of Arhangel′skiĭ concerning the product of Fréchet spaces, Topology Appl. 25 (1987), no. 1, 75–80. MR 874979, 10.1016/0166-8641(87)90076-9
  • [Ny1] P. Nyikos, $ {}^\omega \omega $ and the Fréchet-Urysohn property, in preparation.
  • [Ny2] -, The Cantor tree and the Fréchet-Urysohn property, preprint, 1987.
  • [O] Roy C. Olson, Bi-quotient maps, countably bi-sequential spaces, and related topics, General Topology and Appl. 4 (1974), 1–28. MR 0365463
  • [S1] Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
  • [S2] -, Cardinal invariants of the continuum, Axiomatic Set Theory, Eds. J. Baumgartner, D. A. Martin, S. Shelah, Contemp. Math. Amer. Math. Soc., Providence, R.I., 1986.
  • [Sh] P. L. Sharma, Some characterizations of 𝑊-spaces and 𝑤-spaces, General Topology Appl. 9 (1978), no. 3, 289–293. MR 510910

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E35, 03E35, 03E75, 54A35

Retrieve articles in all journals with MSC: 54E35, 03E35, 03E75, 54A35


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-0975638-7
Keywords: Fréchet-Urysohn space, $ v$-space, $ w$-space
Article copyright: © Copyright 1990 American Mathematical Society