Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Measures of graphs on the reals


Author: Seth M. Malitz
Journal: Proc. Amer. Math. Soc. 108 (1990), 77-87
MSC: Primary 05C99; Secondary 03E05, 28A99
DOI: https://doi.org/10.1090/S0002-9939-1990-0982406-9
MathSciNet review: 982406
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies measure properties of graphs with infinitely many vertices. Let $ [0,1]$ denote the real unit interval, and $ F$ be the collection of bijections taking $ [0,1]$ onto itself. Given a graph $ G = \left\langle {[0,1],E} \right\rangle $ and $ f \in F$, define the $ f$-representation of $ G$ to be the set $ {E_f} = \{ \langle {f(x),f(y)} \rangle :x,y \in [0,1]$ and $ \langle {x,y} \rangle \in E\} $. Let $ \mu $ be $ 2$-dimensional Lebesgue measure. Define the measure spectrum of $ G$ to be the set $ M(G) = \{ m \in [0,1]:\exists f \in F$ with $ {E_f}$ measurable and $ \mu {E_f} = m\} $. Our main result characterizes those subsets of reals that are the measure spectra of graphs.


References [Enhancements On Off] (What's this?)

  • [Ba] J. Barwise, ed., Handbook of mathematical logic, North-Holland, 1977. MR 0457132 (56:15351)
  • [Bl] A. Blass, A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (1981), 271-277. MR 609665 (83k:03063)
  • [Bo] B. Bollabas, Graph theory--an introductory course, Springer-Verlag New York Inc., 1979, p. 72. MR 536131 (80j:05053)
  • [Ca] T. Carlson, personal communication.
  • [Ga] F. Galvin, Partition theorems for the real line, Notices Amer. Math. Soc. 15 (1968), 660; Erratum 16 (1969), 1095.
  • [Ha] F. Harary, Graph theory, Addison-Wesley Publishing Co., 1972. MR 0256911 (41:1566)
  • [Ka] G. Kalai, A new approach to Turán's Conjecture, Graphs and Combinatorics 1 1986, 107-109.
  • [My] J. Mycielski, Algebraic independence and measure, Fund. Math. 61 (1967), 165-169. MR 0224762 (37:361)
  • [Si] W. Sierpinski, Sur un probleme de la theorie des relations, Ann. Scuola Norm. Sup. Pisca 2 (1933), 285-287. MR 1556708

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 05C99, 03E05, 28A99

Retrieve articles in all journals with MSC: 05C99, 03E05, 28A99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0982406-9
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society