Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Iterated fine limits

Author: Kohur GowriSankaran
Journal: Proc. Amer. Math. Soc. 108 (1990), 157-162
MSC: Primary 31D05
MathSciNet review: 987609
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ v$ and $ u$ be, respectively $ n$-superharmonic and $ n$-harmonic functions on the product of $ n$ harmonic spaces. We prove that the iterated fine limits of $ \frac{v}{u}$ exist and are independent of the order, for $ \lambda $ almost every minimal boundary element where $ \lambda $ represents the function $ u$. As an application we prove an important property concerning the reduced function of a positive $ n$-harmonic function.

References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Intégration, chapitre 5, "Intégration des Mesures".
  • [2] M. Brelot, Seminaire de Theorie du Potential, I. H. P. Paris, 1958.
  • [3] K. Gowrisankaran, Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 16 (1966), 455-467. MR 0210917 (35:1802)
  • [4] -, Multiply Harmonic Functions, Nagoya Math. J. 28 (1966), 27-48. MR 0209513 (35:410)
  • [5] -, Iterated fine limits and iterated non-tangential limits, Trans. Amer. Math. Soc. 173 (1972), 71-92. MR 0311927 (47:489)
  • [6] L. Schwartz, Radon measures on general topological spaces, TIFR Monographs Oxford Univ. Press, 1973. MR 0426084 (54:14030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31D05

Retrieve articles in all journals with MSC: 31D05

Additional Information

Keywords: $ n$-superharmonic, fine limits, multi-reduced function
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society