Projections, the weighted Bergman spaces, and the Bloch space

Author:
Boo Rim Choe

Journal:
Proc. Amer. Math. Soc. **108** (1990), 127-136

MSC:
Primary 32A25; Secondary 32A40, 46E99, 47B38

MathSciNet review:
991692

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It has been known that there is a family of projections of the Lebesgue spaces onto the Bergman spaces on the unit ball of . The corresponding result for the weighted Bergman spaces is obtained. As applications a solution of Gleason's problem at the origin for and a characterization of in terms of partial derivatives are indicated without proof. Also the natural limiting case is found: , the Bloch space, and , the little Bloch space. Moreover, simple bounded linear operators , with , are found so that is the identity on . As an application the dualities and are established under each of pairings suggested by projections .

**[1]**Patrick Ahern,*On the behavior near a torus of functions holomorphic in the ball*, Pacific J. Math.**107**(1983), no. 2, 267–278. MR**705748****[2]**J. M. Anderson, J. Clunie, and Ch. Pommerenke,*On Bloch functions and normal functions*, J. Reine Angew. Math.**270**(1974), 12–37. MR**0361090****[3]**Sheldon Axler,*Bergman spaces and their operators*, Surveys of some recent results in operator theory, Vol. I, Pitman Res. Notes Math. Ser., vol. 171, Longman Sci. Tech., Harlow, 1988, pp. 1–50. MR**958569****[4]**R. R. Coifman, R. Rochberg, and Guido Weiss,*Factorization theorems for Hardy spaces in several variables*, Ann. of Math. (2)**103**(1976), no. 3, 611–635. MR**0412721****[5]**P. L. Duren, B. W. Romberg, and A. L. Shields,*Linear functionals on 𝐻^{𝑝} spaces with 0<𝑝<1*, J. Reine Angew. Math.**238**(1969), 32–60. MR**0259579****[6]**Frank Forelli and Walter Rudin,*Projections on spaces of holomorphic functions in balls*, Indiana Univ. Math. J.**24**(1974/75), 593–602. MR**0357866****[7]**Clinton J. Kolaski,*A new look at a theorem of Forelli and Rudin*, Indiana Univ. Math. J.**28**(1979), no. 3, 495–499. MR**529680**, 10.1512/iumj.1979.28.28034**[8]**Steven G. Krantz and Daowei Ma,*Bloch functions on strongly pseudoconvex domains*, Indiana Univ. Math. J.**37**(1988), no. 1, 145–163. MR**942099**, 10.1512/iumj.1988.37.37007**[9]**Walter Rudin,*Function theory in the unit ball of 𝐶ⁿ*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR**601594****[10]**A. L. Shields and D. L. Williams,*Bonded projections, duality, and multipliers in spaces of analytic functions*, Trans. Amer. Math. Soc.**162**(1971), 287–302. MR**0283559**, 10.1090/S0002-9947-1971-0283559-3**[11]**Richard M. Timoney,*Bloch functions in several complex variables. I*, Bull. London Math. Soc.**12**(1980), no. 4, 241–267. MR**576974**, 10.1112/blms/12.4.241**[12]**Richard M. Timoney,*Bloch functions in several complex variables. II*, J. Reine Angew. Math.**319**(1980), 1–22. MR**586111**, 10.1515/crll.1980.319.1**[13]**Ke He Zhu,*Duality and Hankel operators on the Bergman spaces of bounded symmetric domains*, J. Funct. Anal.**81**(1988), no. 2, 260–278. MR**971880**, 10.1016/0022-1236(88)90100-0**[14]**Ke He Zhu,*The Bergman spaces, the Bloch space, and Gleason’s problem*, Trans. Amer. Math. Soc.**309**(1988), no. 1, 253–268. MR**931533**, 10.1090/S0002-9947-1988-0931533-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
32A25,
32A40,
46E99,
47B38

Retrieve articles in all journals with MSC: 32A25, 32A40, 46E99, 47B38

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1990-0991692-0

Keywords:
Projections,
weighted Bergman spaces,
Bloch space

Article copyright:
© Copyright 1990
American Mathematical Society