Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Projections, the weighted Bergman spaces, and the Bloch space


Author: Boo Rim Choe
Journal: Proc. Amer. Math. Soc. 108 (1990), 127-136
MSC: Primary 32A25; Secondary 32A40, 46E99, 47B38
DOI: https://doi.org/10.1090/S0002-9939-1990-0991692-0
MathSciNet review: 991692
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It has been known that there is a family of projections $ {P_S}$ of the Lebesgue spaces onto the Bergman spaces on the unit ball of $ {\mathbb{C}^n}(n \geq 1)$. The corresponding result for the weighted Bergman spaces $ A_\alpha ^p$ is obtained. As applications a solution of Gleason's problem at the origin for $ A_\alpha ^p$ and a characterization of $ A_\alpha ^p$ in terms of partial derivatives are indicated without proof. Also the natural limiting case is found: $ {P_S}{L^\infty } = \mathfrak{B}$, the Bloch space, and $ {P_S}{C_0} = {\mathfrak{B}_0}$, the little Bloch space. Moreover, simple bounded linear operators $ {L_S}:\mathfrak{B} \to {L^\infty }$, with $ {L_S}({\mathfrak{B}_0}) \subset {C_0}$, are found so that $ {P_S} \circ {L_S}$ is the identity on $ \mathfrak{B}$. As an application the dualities $ \mathfrak{B} = {(A_\alpha ^1)^ * }$ and $ \mathfrak{B}_0^ * = A_\alpha ^1$ are established under each of pairings suggested by projections $ {P_S}$.


References [Enhancements On Off] (What's this?)

  • [1] P. Ahem, On the behavior near a torus of functions holomorphic in the ball, Pacific J. Math. 107 (1983), 267-278. MR 705748 (84i:32023)
  • [2] J. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37. MR 0361090 (50:13536)
  • [3] S. Axler, Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, Res. Notes in Math., Pitman, 1988, pp. 1-50. MR 958569 (90b:47048)
  • [4] R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (2) (1976), 611-635. MR 0412721 (54:843)
  • [5] P. Duren, B. Romberg, and A. Shields, Linear functionals on $ {H^p}$ spaces with $ 0 < p < 1$, J. Reine Angew. Math. 238 (1969), 32-60. MR 0259579 (41:4217)
  • [6] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602. MR 0357866 (50:10332)
  • [7] C. Kolaski, A new look at a theorem of Forelli and Rudin, Indiana Univ. Math. J. 28 (1979), 495-499. MR 529680 (82b:32002)
  • [8] S. Krantz and D. Ma, Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), 145-163. MR 942099 (89h:32003)
  • [9] W. Rudin, Function theory in the unit ball of $ {\mathbb{C}^n}$, Springer-Verlag, Berlin, Heidelberg, New York, 1980. MR 601594 (82i:32002)
  • [10] A. Shields and L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302. MR 0283559 (44:790)
  • [11] R. Timoney, Bloch functions in several variables I, Bull. London Math. Soc. 12 (1980), 241-267. MR 576974 (83b:32004)
  • [12] -, Bloch functions in several variables II, J. Reine Angew. Math. 319 (1980), 1-22. MR 586111 (83b:32005)
  • [13] K. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278. MR 971880 (90h:47051)
  • [14] -, The Bergman spaces, the Bloch space, and Gleason's problem, Trans. Amer. Math. Soc. 309 (1988), 253-268. MR 931533 (89j:46025)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A25, 32A40, 46E99, 47B38

Retrieve articles in all journals with MSC: 32A25, 32A40, 46E99, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0991692-0
Keywords: Projections, weighted Bergman spaces, Bloch space
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society