Chaotic numerics from an integrable Hamiltonian system

Author:
Kevin Hockett

Journal:
Proc. Amer. Math. Soc. **108** (1990), 271-281

MSC:
Primary 58F13; Secondary 58F05, 65D99, 65L99, 70F05, 70H05

DOI:
https://doi.org/10.1090/S0002-9939-1990-0993752-7

MathSciNet review:
993752

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the dynamics of the map obtained by applying Euler's method with stepsize to the central force problem. We prove that, for *any* , the nonwandering set of contains a subset on which the dynamics of are topologically semiconjugate to a subshift of finite type. The subshift has positive topological entropy, hence so does .

**[1]**V. I. Arnol′d,*Mathematical methods of classical mechanics*, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR**0690288****[2]**Rufus Bowen,*On Axiom A diffeomorphisms*, American Mathematical Society, Providence, R.I., 1978. Regional Conference Series in Mathematics, No. 35. MR**0482842****[3]**P. J. Channell and C. Scovel,*Symplectic integration of Hamiltonian systems*, Nonlinearity**3**(1990), no. 2, 231–259. MR**1054575****[4]**James H. Curry, Lucy Garnett, and Dennis Sullivan,*On the iteration of a rational function: computer experiments with Newton’s method*, Comm. Math. Phys.**91**(1983), no. 2, 267–277. MR**723551****[5]**F.R. Gantmacher [1960],*The theory of matrices*, Vol. II, Chelsea Publishing Co., New York.**[6]**Stephen M. Hammel, James A. Yorke, and Celso Grebogi,*Numerical orbits of chaotic processes represent true orbits*, Bull. Amer. Math. Soc. (N.S.)**19**(1988), no. 2, 465–469. MR**938160**, https://doi.org/10.1090/S0273-0979-1988-15701-1**[7]**E. Lorenz [1988],*Computational chaos*, MIT, preprint.**[8]**F. Neri [1988],*Lie algebras and canonical integration*, University of Maryland, preprint.**[9]**R. Ruth [1983],*A canonical integration technique*, IEEE Trans. Nucl. Sei.,**NS30**, 2669.**[10]**Donald G. Saari and John B. Urenko,*Newton’s method, circle maps, and chaotic motion*, Amer. Math. Monthly**91**(1984), no. 1, 3–17. MR**729188**, https://doi.org/10.2307/2322163**[11]**Michael Shub,*Global stability of dynamical systems*, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR**869255****[12]**Michael Shub and Alphonse Thomas Vasquez,*Some linearly induced Morse-Smale systems, the QR algorithm and the Toda lattice*, The legacy of Sonya Kovalevskaya (Cambridge, Mass., and Amherst, Mass., 1985) Contemp. Math., vol. 64, Amer. Math. Soc., Providence, RI, 1987, pp. 181–194. MR**881462**, https://doi.org/10.1090/conm/064/881462**[13]**Steve Smale,*On the efficiency of algorithms of analysis*, Bull. Amer. Math. Soc. (N.S.)**13**(1985), no. 2, 87–121. MR**799791**, https://doi.org/10.1090/S0273-0979-1985-15391-1

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F13,
58F05,
65D99,
65L99,
70F05,
70H05

Retrieve articles in all journals with MSC: 58F13, 58F05, 65D99, 65L99, 70F05, 70H05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-0993752-7

Article copyright:
© Copyright 1990
American Mathematical Society