Chaotic numerics from an integrable Hamiltonian system

Author:
Kevin Hockett

Journal:
Proc. Amer. Math. Soc. **108** (1990), 271-281

MSC:
Primary 58F13; Secondary 58F05, 65D99, 65L99, 70F05, 70H05

DOI:
https://doi.org/10.1090/S0002-9939-1990-0993752-7

MathSciNet review:
993752

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the dynamics of the map obtained by applying Euler's method with stepsize to the central force problem. We prove that, for *any* , the nonwandering set of contains a subset on which the dynamics of are topologically semiconjugate to a subshift of finite type. The subshift has positive topological entropy, hence so does .

**[1]**V.I. Arnold [1978],*Mathematical methods of classical mechanics*, Springer-Verlag, New York. MR**0690288 (57:14033b)****[2]**R. Bowen [1978],*On axiom A diffeomorphisms*, CBMS Reg. Conf. Ser. in Math., No. 35, Amer. Math. Soc., Providence, Rhode Island. MR**0482842 (58:2888)****[3]**P.J. Channell and J.C. Scovel [1988],*Symplectic integration of Hamiltonian systems*, LANL, preprint. MR**1054575 (91g:58073)****[4]**J. Curry, L. Garnett and D. Sullivan [1983],*On the iteration of a rational function: computer experiments with Newton's method*, Comm. Math. Phys.,**91**, 267-277. MR**723551 (85e:30040)****[5]**F.R. Gantmacher [1960],*The theory of matrices*, Vol. II, Chelsea Publishing Co., New York.**[6]**S. Hammel, J. Yorke and C. Grebogi [1988],*Numerical orbits of chaotic processes represent true orbits*, Bull. Amer. Math. Soc. (New Series),**19**, 465-469. MR**938160 (89m:58180)****[7]**E. Lorenz [1988],*Computational chaos*, MIT, preprint.**[8]**F. Neri [1988],*Lie algebras and canonical integration*, University of Maryland, preprint.**[9]**R. Ruth [1983],*A canonical integration technique*, IEEE Trans. Nucl. Sei.,**NS30**, 2669.**[10]**D. Saari and J. Urenko [1984],*Newton's method, circle maps and chaotic motion*, Amer. Math. Monthly,**91**, 3-17. MR**729188 (85a:58060)****[11]**M. Shub [1987],*Global stability of dynamical systems*, Springer-Verlag, New York. MR**869255 (87m:58086)****[12]**M. Shub and A. Vasquez [1987],*Some linearly induced Morse-Smale systems, the QR algorithm and the Toda lattice*, in Contemporary Mathematics,**64**, The Legacy of Sonya Kovalevskaya, (Linda Keen, ed.), Amer. Math. Soc., Providence, Rhode Island. MR**881462 (88c:58034)****[13]**S. Smale [1985],*On the efficiency of algorithms of analysis*, Bull. Amer. Math. Soc. (New Series),**13**, 87-121. MR**799791 (86m:65061)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F13,
58F05,
65D99,
65L99,
70F05,
70H05

Retrieve articles in all journals with MSC: 58F13, 58F05, 65D99, 65L99, 70F05, 70H05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-0993752-7

Article copyright:
© Copyright 1990
American Mathematical Society