Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Differentiable restrictions of real functions


Author: Jack B. Brown
Journal: Proc. Amer. Math. Soc. 108 (1990), 391-398
MSC: Primary 26A24
DOI: https://doi.org/10.1090/S0002-9939-1990-0987607-1
MathSciNet review: 987607
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some new theorems about differentiable, continuously differentiable, or highly differentiable restrictions of continuous and measurable real functions are presented.


References [Enhancements On Off] (What's this?)

  • [1] S. Agronsky, A. M. Bruckner, M. Laczkovich and D. Preiss, Convexity conditions and intersections with smooth functions, Trans. Amer. Math. Soc. 289 (1985), 659-677. MR 784008 (86g:26012)
  • [2] J. B. Brown and K. Prikry, Variations on Lusin's theorem, Trans. Amer. Math. Soc. 302 (1987), 77-86. MR 887497 (88e:26003)
  • [3] A. M. Bruckner, J. G. Ceder and M. L. Weiss, On the differentiability structure of real functions, Trans. Amer. Math. Soc. 142 (1969), 1-13. MR 0259037 (41:3679)
  • [4] F. Filipczak, Sur les fonctions continues relativement monotones, Fund. Math. LVIII (1966), 75-87. MR 0188381 (32:5820)
  • [5] K. M. Garg, On level sets of a continuous nowhere monotone function, Fund. Math. LII (1963), 60-68. MR 0143855 (26:1405)
  • [6] V. Jarník, Sur l'extension du domaine de définition des fonctions d'une variable qui laisse intacte la dérivabilité de la fonction, Bull. Int. Acad. Sci Bohême, (1923).
  • [7] -, Sur les nombres dérivés approximatifs, Fund. Math. 22 (1934), 4-16.
  • [8] M. Laczkovich, Differentiable restrictions of continuous functions, Acta Math. Hungar. 44 (1984), 355-360. MR 764629 (86d:26010)
  • [9] S. Marcus, Sur les fonctions continues qui ne sont monotones en acun intervalle, Rev. Math. Pures Appl. 3 (1958), 101-105. MR 0107680 (21:6403)
  • [10] S. Minakshisundaram, On the roots of a continuous non-differentiable function, J. Indian Math. Soc. 4 (1940), 31-33. MR 0001827 (1:303a)
  • [11] M. Morayne, On continuity of symmetric restrictions of Borel functions, Proc. Amer. Math Soc. 93 (1985), 440-442. MR 773998 (86b:26024)
  • [12] K. Padmavally, On the roots of equation $ f\left( x \right) = \xi $ where $ f\left( x \right)$ is real and continuous in $ \left( {a,b} \right)$ but monotonic in no subinterval of $ \left( {a,b} \right)$, Proc. Amer. Math. Soc. 4 (1953), 839-841. MR 0059341 (15:513h)
  • [13] G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions, and derivatives, Acta Math. Hungar. 25, (1974), 189-212. MR 0379766 (52:671)
  • [14] S. Saks, Theory of the integral, 2nd Rev. Ed., Dover Publications, New York, 1964. MR 0167578 (29:4850)
  • [15] W. Sierpinski and A. Zygmund, Sur un fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923), 316-318.
  • [16] H. Whitney, Functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. MR 1501735

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A24

Retrieve articles in all journals with MSC: 26A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0987607-1
Keywords: Differentiable restrictions, $ {C^\infty }$, perfect set
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society