Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Multiplicative functions on arithmetic progressions


Author: Adolf Hildebrand
Journal: Proc. Amer. Math. Soc. 108 (1990), 307-318
MSC: Primary 11N64; Secondary 11N37
DOI: https://doi.org/10.1090/S0002-9939-1990-0991697-X
MathSciNet review: 991697
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a multiplicative arithmetic function satisfying $ \left\vert f \right\vert \leq 1$, let $ x \geq 10$ and $ 2 \leq Q \leq {x^{1/3}}$. It Is shown that, with suitable integers $ {q_1} \geq 2$ and $ {q_2} \geq 2$, the estimate

$\displaystyle \sum\limits_{\begin{array}{*{20}{c}} {n \leq x} \\ {n \equiv a\bm... ...ac{x}{q}{{\left( {\log \frac{{\log x}}{{\log Q}}} \right)}^{ - 1/2}}} \right)} $

holds uniformly for $ \left( {a,q} \right) = 1$ and all moduli $ q \leq Q$ that are not multiples of $ {q_1}$ or $ {q_2}$.

References [Enhancements On Off] (What's this?)

  • [1] E. Bombieri, Le grand crible dans la théorie analytique des nombres (seconde édition revue et augmentée), Astérisque 18 (1987/1974). MR 891718 (88g:11064)
  • [2] E. Bombieri, J. B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251. MR 834613 (88b:11058)
  • [3] P. D. T. A. Elliott, Arithmetic functions and integer products, Springer-Verlag, New York, 1985. MR 766558 (86j:11095)
  • [4] -, Additive arithmetic functions on arithmetic progressions, Proc. London Math. Soc. 54 (1987), 15-37. MR 872248 (88e:11079)
  • [5] -, Multiplicative functions on arithmetic progressions, Mathematika 34 (1987), 199-206. MR 933499 (89g:11083)
  • [6] -, Multiplicative functions on arithmetic progressions II, Mathematika 35 (1988), 38-50. MR 962733 (90d:11106)
  • [7] P. X. Gallagher, A large sieve density estimate near $ \sigma = 1$, Invent. Math. 11 (1970), 329-339. MR 0279049 (43:4775)
  • [8] A. Hildebrand, Additive functions on arithmetic progressions, J. London Math. Soc. (2) 34 (1986), 394-402. MR 864442 (88a:11098)
  • [9] Y. Motohashi, An induction principle for the generalization of Bombieri's prime number theorem, Proc. Japan Acad. 52 (1976), 273-275. MR 0422179 (54:10171)
  • [10] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161-170. MR 552470 (81h:10065)
  • [11] E. Wirsing, Additive functions with restricted growth on the numbers of the form $ p + 1$, Acta Arith. 37 (1980), 345-357. MR 598887 (82b:10056)
  • [12] D. Wolke, Die mittlere Verteilung zahlentheoretischer Funktionen auf Restklassen I, J. Math. Ann. 202 (1973), 1-25. MR 0327688 (48:6030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11N64, 11N37

Retrieve articles in all journals with MSC: 11N64, 11N37


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0991697-X
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society