Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Characterizations of Tauberian operators and other semigroups of operators


Authors: M. Gonzalez and V. M. Onieva
Journal: Proc. Amer. Math. Soc. 108 (1990), 399-405
MSC: Primary 47B99; Secondary 47D05
DOI: https://doi.org/10.1090/S0002-9939-1990-0994777-8
MathSciNet review: 994777
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we present three characterizations of Tauberian operators in terms of: perturbations by compact operators, products with other operators, and restrictions to subspaces. We obtain also analogous characterizations for co-Tauberian operators and for other semigroups of operators related with the Tauberian and co-Tauberian ones.


References [Enhancements On Off] (What's this?)

  • [1] W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. MR 0355536 (50:8010)
  • [2] J. Diestel, Sequences and series in Banach spaces, Springer, New York, 1984. MR 737004 (85i:46020)
  • [3] D. J. H. Garling and A. Wilansky, On a summability theorem of Berg, Crawford and Whitley, Math. Proc. Cambridge Philos. Soc. 71 (1972), 495-497. MR 0294946 (45:4014)
  • [4] M. Gonzalez and V. M. Onieva, Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Roy. Irish Acad. Sect. A 88 (1988), 35-38. MR 974281 (90a:47111)
  • [5] -, Semi-Fredholm operators and semigroups associated with some classical operator ideals II, Proc. Roy. Irish. Acad. Sect. A 88 (1988), 119-124. MR 986218 (90d:47015)
  • [6] -, Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Philos. Soc. 105 (1989), 117-121. MR 966145 (90a:46028)
  • [7] R. Harte, Invertibility and singularity for bounded linear operators, Marcel Dekker, New York, 1988. MR 920812 (89d:47001)
  • [8] W. B. Johnson and H. P. Rosenthal, On $ {w^ * }$ basic sequences and their application to the study of Banach spaces, Studia Math. 43 (1972), 77-92. MR 0310598 (46:9696)
  • [9] N. J. Kalton and A. Wilansky, Tauberian operators in Banach spaces, Proc. Amer. Math. Soc. 57 (1976), 251-255. MR 0473896 (57:13555)
  • [10] D. H. Martin and J. Swart, A characterization of semi-Fredholm operators defined on almost reflexive Banach spaces, Proc. Roy. Irish Acad. Sect. A 86 (1986), 91-93. MR 865107 (87m:47039)
  • [11] R. D. Neidinger, Properties of Tauberian operators on Banach spaces, Ph.D. Thesis, University of Texas, 1984.
  • [12] R. D. Neidinger and H. P. Rosenthal, Norm-attainment of linear functionals on subspaces and characterizations of Tauberian operators, Pacific J. Math. 118 (1985), 215-228. MR 783025 (86f:46013)
  • [13] A. Pietsch, Operator ideals, North-Holland, Amsterdam, 1980. MR 582655 (81j:47001)
  • [14] H. P. Rosenthal, A characterization of Banach spaces containing $ {l_1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. MR 0358307 (50:10773)
  • [15] W. Schachermayer, For a Banach space isomorphic to its square the Radon-Nikodym property and the Krein-Milman property are equivalent, Studia Math. 81 (1985), 329-339. MR 808576 (87e:46032)
  • [16] I. Singer, Bases in Banach spaces II, Springer, New York, 1981. MR 610799 (82k:46024)
  • [17] D. G. Tacon, Generalized semi-Fredholm transformations, J. Austral. Math. Soc. A34 (1983), 60-70. MR 683179 (84d:47015)
  • [18] K. W. Yang, The generalized Fredholm operators, Trans. Amer. Math. Soc. 219 (1976), 313-326. MR 0423114 (54:11095)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B99, 47D05

Retrieve articles in all journals with MSC: 47B99, 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0994777-8
Keywords: Tauberian operator, compact perturbation, ideal semigroup
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society