Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The symmetry of the Weierstrass generalized semigroups and affine embeddings

Author: Félix Delgado
Journal: Proc. Amer. Math. Soc. 108 (1990), 627-631
MSC: Primary 14H45; Secondary 14M10
MathSciNet review: 990420
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The characterization of the property of complete intersection for affine curves with one place at infinity in terms of the Weierstrass semigroup can be generalized to the case of several places at infinity.

References [Enhancements On Off] (What's this?)

  • [1] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves, vol. I Grundlehren der Math. Wiss. 267, Springer-Verlag, New York, 1985. MR 770932 (86h:14019)
  • [2] F. Delgado, The semigroup of values of a curve singularity with several branches, Manuscripta Math. 59 (1987), 347-374. MR 909850 (89f:14022)
  • [3] -, Gorenstein curves and symmetry of the semigroup of values, Manuscripta Math. 61 (1988), 285-296. MR 949819 (89h:14024)
  • [4] R. Harsthorne, Algebraic geometry, GTM no. 52, Springer-Verlag, Berlin, Heidelberg and New York, 1977. MR 0463157 (57:3116)
  • [5] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. of the Amer. Math. Soc. 25 (1970) 748-751. MR 0265353 (42:263)
  • [6] M. P. Murthy and J. Towber, Algebraic vector bundles over $ {{\mathbf{A}}^3}$ are trivial, Invent. Math. 24 (1974) 173-189. MR 0422276 (54:10267)
  • [7] A. Sathaye, On planar curves, Am. J. Math. 99 (1974), 1105-1135. MR 0466148 (57:6029)
  • [8] J. P. Serre, Sur les modules projectifs, Seminaire Dubreil-Pisot 1960/61, No. 1.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14H45, 14M10

Retrieve articles in all journals with MSC: 14H45, 14M10

Additional Information

Keywords: Weierstrass semigroups, affine complete intersections
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society