Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A characterization of the Mackey topology $ \tau(L\sp \infty, L\sp 1)$


Author: Marian Nowak
Journal: Proc. Amer. Math. Soc. 108 (1990), 683-689
MSC: Primary 46E30; Secondary 46A20
DOI: https://doi.org/10.1090/S0002-9939-1990-0991705-6
MathSciNet review: 991705
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a description of the Mackey topology $ \tau ({L^\infty },{L^1})$ for finite measures in terms of a family of norms defined by certain Young functions. As an application we obtain various topological characterizations of sequential convergence in $ \tau ({L^\infty },{L^1})$. Moreover, we obtain a criterion for relative weak compactness in $ {L^1}$ in terms of the integral functional defined by some Young function.


References [Enhancements On Off] (What's this?)

  • [1] C. D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces, Academic Press, New York, 1978. MR 0493242 (58:12271)
  • [2] T. Andô, Weakly compact sets in Orlicz spaces, Canad. J. Math. 14 (1962), 170-176. MR 0157228 (28:464)
  • [3] J. B. Cooper, Saks spaces and applications to functional analysis, North-Holland, Amsterdam, 1978. MR 492535 (80h:46030)
  • [4] N. Dunford and J. Schwartz, Linear operators I, Interscience Publishers, New York, 1958. MR 0117523 (22:8302)
  • [5] L. V. Kantorovich and G. P. Akilov, Functional analysis, Nauka, Moscow, 1984 (Russian). MR 788496 (86m:46001)
  • [6] M. A. Krasnoselskii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Noorhoff Ltd., Groningen, 1961. MR 0126722 (23:A4016)
  • [7] W. A. Luxemburg, Banach function spaces, Delft, 1955.
  • [8] W. A. Luxemburg and A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150-180. MR 0145374 (26:2905)
  • [9] M. Nowak, On the finest Lebesgue topology on the space of essentially bounded measurable functions, Pacific J. Math. 139 (1989). MR 1019072 (90m:46039)
  • [10] K. Stroyan, A characterization of the Mackey uniformity $ m({L^\infty },{L^1})$ for finite measures, Pacific J. Math. 49 (1973), 223-228. MR 0336315 (49:1090)
  • [11] A. Wiweger, Linear spaces with mixed topologies, Studia Math. 20 (1961), 47-68. MR 0133664 (24:A3490)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E30, 46A20

Retrieve articles in all journals with MSC: 46E30, 46A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0991705-6
Keywords: Mackey topology $ \tau ({L^\infty },{L^1})$, Orlicz spaces, mixed topologies, locally solid Riesz spaces
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society