Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Hilbert-Schmidt Hankel operators on the Bergman space


Author: Ke He Zhu
Journal: Proc. Amer. Math. Soc. 109 (1990), 721-730
MSC: Primary 47B35; Secondary 32A99, 46E20, 47B10
MathSciNet review: 1013987
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there are no nonzero Hilbert-Schmidt Hankel operators on the Bergman space of the open unit ball in $ {{\mathbf{C}}^n}$ with antiholomorphic symbols when $ n \geq 2$.


References [Enhancements On Off] (What's this?)

  • [1] J. Arazy and S. Fisher, The uniqueness of the Dirichlet space among Möbius invariant Hilbert spaces, Ill. J. Math. 29 (1985), 449-462. MR 786732 (86j:30072)
  • [2] J. Arazy, S. Fisher, and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110-145. MR 814017 (87f:30104)
  • [3] -, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054. MR 970119 (90a:47067)
  • [4] S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. MR 850538 (87m:47064)
  • [5] S. Axler, Bergman spaces and their operators, Pitman Research Notes in Math. 171 (1988), 1-55. MR 958569 (90b:47048)
  • [6] C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory in Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921-953. MR 961500 (89m:32053)
  • [7] D. Békollé, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergmann metric on bounded symmetric domains, J. Funct. Anal. (to appear). MR 1073289 (91j:32034)
  • [8] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, AMS Translations of Mathematical Monographs, 18, 1969. MR 0246142 (39:7447)
  • [9] W. Rudin, Function theory in the unit ball of $ {{\mathbf{C}}^n}$, Springer, 1980. MR 601594 (82i:32002)
  • [10] K. Stroethoff, Compact Hankel operators on the Bergman space, Ill. J. Math. (to appear). MR 1031892 (91a:47030)
  • [11] R. Timoney, Bloch functions in several complex variables, I, Bull. London Math. Soc. 12 (1980), 241-267. MR 576974 (83b:32004)
  • [12] K. H. Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. Amer. Math. Soc. 302 (1987), 617-646. MR 891638 (89a:47038)
  • [13] -, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20 (1988), 329-357. MR 1004127 (92f:47022)
  • [14] -, Invariant Hilbert spaces of holomorphic functions in the open unit ball of $ {{\mathbf{C}}^n}$, Trans. Amer. Math. Soc. (to appear). MR 2038649 (2005b:32043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B35, 32A99, 46E20, 47B10

Retrieve articles in all journals with MSC: 47B35, 32A99, 46E20, 47B10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1013987-7
PII: S 0002-9939(1990)1013987-7
Article copyright: © Copyright 1990 American Mathematical Society