The Diophantine equation

Author:
Todd Cochrane

Journal:
Proc. Amer. Math. Soc. **109** (1990), 573-577

MSC:
Primary 11D41

DOI:
https://doi.org/10.1090/S0002-9939-1990-1019271-X

MathSciNet review:
1019271

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be polynomials over of degrees and respectively and with leading coefficients . Suppose that and that is the th power of a rational number. We give two elementary proofs that the equation has at most finitely many integral solutions unless for some polynomial with rational coefficients taking integral values at infinitely many integers.

**[1]**H. Davenport, D. J. Lewis, and A. Schinzel,*Equations of the form 𝑓(𝑥)=𝑔(𝑦)*, Quart. J. Math. Oxford Ser. (2)**12**(1961), 304–312. MR**0137703**, https://doi.org/10.1093/qmath/12.1.304**[2]**W. J. LeVeque,*A brief survey of diophantine equations*, Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969, pp. 4–24. MR**0250970****[3]**Barry Mazur,*Arithmetic on curves*, Bull. Amer. Math. Soc. (N.S.)**14**(1986), no. 2, 207–259. MR**828821**, https://doi.org/10.1090/S0273-0979-1986-15430-3**[4]**G. Pólya and G. Szegö,*Problems and theorems in analysis*II, Springer-Verlag, New York, 1976.**[5]**C. L. Siegel,*Uber einige anwendungen diophantischer approximationen*, Abh. Preuss. Akad. Wiss. Phys. - Mat. Kl., no. 1 (1929).**[6]**T. A. Skolem,*Videnskapsselskapets Skrifter*, no. 17 (1921), Theorem 8.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11D41

Retrieve articles in all journals with MSC: 11D41

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1019271-X

Article copyright:
© Copyright 1990
American Mathematical Society