Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A local bifurcation theorem for $ C\sp 1$-Fredholm maps


Authors: P. M. Fitzpatrick and Jacobo Pejsachowicz
Journal: Proc. Amer. Math. Soc. 109 (1990), 995-1002
MSC: Primary 58E07; Secondary 47H15
DOI: https://doi.org/10.1090/S0002-9939-1990-1009988-5
MathSciNet review: 1009988
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Krasnosel'skii Bifurcation Theorem is generalized to $ {C^1}$-Fredholm maps. Let $ X$ and $ Y$ be Banach spaces, $ F:R \times X \to Y$ be $ {C^1}$-Fredholm of index 1 and $ F(\lambda ,0) \equiv 0$ . If $ I \subseteq R$ is a closed, bounded interval at whose endpoints $ \frac{{\partial F}}{{\partial x}}\frac{{\partial F}}{{\partial x}}(\lambda ,0)$ is invertible, and the parity of $ \frac{{\partial F}}{{\partial x}}(\lambda ,0)$ on $ I$ is -1, then $ I$ contains a bifurcation point of the equation $ F(\lambda ,x) = 0$. At isolated potential bifurcation points, this sufficient condition for bifurcation is also necessary.


References [Enhancements On Off] (What's this?)

  • [C-R] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340. MR 0288640 (44:5836)
  • [E] J. Esquinas, Optimal multiplicity in local bifurcation theory, II, The general case, J. Differential Equations 75 (1988), 206-215. MR 961153 (89j:58015)
  • [E-L] J. Esquinas and J. Lopez-Gomez, Optimal multiplicity in local bifurcation theory, I, Generalized generic eigenvalues, J. Differential Equations 71 (1988), 72-92. MR 922199 (89b:47086)
  • [F] P. M. Fitzpatrick, The stability of parity and global bifurcation via Galerkin approximation, J. London Math. Soc. 38 (1988), 153-165. MR 949090 (89k:47085)
  • [F-P1] P. M. Fitzpatrick and Jacobo Pejsachowicz, An extension of the Leray-Schauder degree for fully nonlinear elliptic problems, Proceedings of Symp. in Pure Math., vol. 45, Part 1, 1986, pp. 425-439. MR 843576 (87g:58016)
  • [F-P2] -, Parity and generalized multiplicity, J. Funct. Anal. (in press).
  • [F-P3] -, Degree theory for quasilinear Fredholm maps, with applications to fully nonlinear elliptic problems, in preparation.
  • [I1] J. Ize, Bifurcation theory for Fredholm operators, Memoirs of the Amer. Math. Soc., no. 174, 1975. MR 0425696 (54:13649)
  • [I2] -, Necessary and sufficient conditions for multiparameter bifurcation, Technical Communication, no. 429 (1986), UNAM.
  • [Ka] T. Kato, Perturbation theory of linear operators, Grund. der Mat. Wissen. 132, Springer-Verlag.
  • [Ki] H. Kielhöfer, Multiple eigenvalue bifurcation for Fredholm operators, J. Reine Angew. Math. 358 (1985), 104-124. MR 797678 (87a:58035)
  • [Kr] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon, New York, 1964. MR 0159197 (28:2414)
  • [L] N. G. Lloyd, Degree theory, Cambridge Tracts in Mathematics 73, Cambridge University Press, 1978. MR 0493564 (58:12558)
  • [L-M] B. Laloux and J. Mawhin, Coincidence index and multiplicity, Trans. Amer. Math. Soc. 217 (1976), 143-162. MR 0423138 (54:11119)
  • [M] R. J. Magnus, A generalization of multiplicity and the problem of bifurcation, Proc. London Math. Soc. 3 (1976), pp. 251-278. MR 0402561 (53:6380)
  • [Ra] P. Rabier, Generalized Jordan chains and two bifurcation theorems of Krasnoselskii, Nonlinear Analysis 13 (1989), 903-934. MR 1009078 (90k:58042)
  • [R] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Func. Anal. 7 (1971), 487-513. MR 0301587 (46:745)
  • [S] P. Sarreither, Transformationseigenschaften Endlicher Ketten und Allgemeine Verzweigungsaussagen, Math. Scand. 35 (1974), 115-128. MR 0361859 (50:14302)
  • [T] J. F. Toland, A Leray-Schauder degree calculation leading to non-standard global bifurcation results, Bull. London Math. Soc. 15 (1983), 149-154. MR 689248 (84i:58031)
  • [W-W] J.R.L. Webb and S. C. Welsh, $ {\text{A}}$-proper maps and bifurcation theory, in Ordinary and Partial Differential Equations, Lecture Notes in Math., vol. 1151, 342-349. MR 826304 (87h:58036)
  • [W] D. Westreich, Bifurcation at eigenvalues of odd multiplicity, Proc. Amer. Math. Soc. 41 (1973), 609-614. MR 0328707 (48:7049)
  • [We] S. C. Welsh, Global results concerning bifurcation for Fredholm Maps of index zero with a transversality assumption, Nonlinear Analysis, 12 (1988), 1137-1149. MR 969494 (89j:47036)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58E07, 47H15

Retrieve articles in all journals with MSC: 58E07, 47H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1009988-5
Keywords: Bifurcation, nonlinear Fredholm, parity
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society