Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Kleinian groups, Laplacian on forms and currents at infinity


Author: Mark Pollicott
Journal: Proc. Amer. Math. Soc. 110 (1990), 269-279
MSC: Primary 58G25; Secondary 22E40, 30F40, 58F17, 58F20
MathSciNet review: 1012936
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we consider the spectrum of the Laplacian acting on the space of (co-closed) differential forms on the quotient of $ n$-dimensional hyperbolic space by a co-compact Kleinian group. Using a result of P.-Y. Gaillard we relate these to currents on the sphere at infinity of hyperbolic space with distinctive transformation properties under the action of the group. We analyse these currents using zeta-functions and Ruelle's Transfer operator. This represents a partial extension of earlier work of the author related to Fuchsian groups. In an appendix we propose an alternative approach to related questions.


References [Enhancements On Off] (What's this?)

  • [1] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460. MR 0339281 (49:4041)
  • [2] R. Brooks, On the deformation theory of classical Schottky groups, Duke J. Math. 52 (1985), 1009-1024. MR 816397 (87g:32024)
  • [3] -, Injectivity radius and low eigenvalues of hyperbolic manifolds, J. Reine Angew. Math. 390 (1988), 117-129. MR 953681 (89h:58192)
  • [4] I. Cheval, Eigenvalues in Riemannian geometry, Academic Press, New York, 1984. MR 768584 (86g:58140)
  • [5] P. Doyle, The bass note of a Schottky group, Acta Math. 160 (1988), 249-284. MR 945013 (90b:30053)
  • [6] D. Fried, The zeta functions of Ruelle and Selberg I, Ann. Ec. Norm. Sup. 19 (1986), 491-517. MR 875085 (88k:58134)
  • [7] P. Y. Gaillard, Transformation de Poisson de formes differentielles, Le cas de l' space hyperbolique, Comm. Math. Helvetici 61 (1986), 581-616. MR 870708 (88c:43011)
  • [8] R. Gangolli, Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one, Ill. J. Math. 21 (1977), 1-41. MR 0485702 (58:5524)
  • [9] L. Guillope, Sur la distribution des longueurs des geodesiques fermees d' une surface compacte a bord totalement geodesique, preprint. MR 860674 (88e:11042)
  • [10] S. Helgason, Topics in harmonic analysis on homogeneous spaces, Birkhäuser, Berlin, 1981. MR 632696 (83g:43009)
  • [11] S. Patterson, The limit set of a fuchsian group, Acta Math. 136 (1976), 241-273. MR 0450547 (56:8841)
  • [12] R. Phillips and P. Sarnak, The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups, Acta Math. 155 (1985), 173-273. MR 806414 (87e:58209)
  • [13] M. Pollicott, Some applications of thermodynamic formalism to compact manifolds of constant negative curvature, Adv. in Math. (to appear).
  • [14] D. Ruelle, Zeta functions for expanding maps and Anosov flows, Invent. Math. 34 (1976), 231-242. MR 0420720 (54:8732)
  • [15] D. Sullivan, The density at infinity of a compact group of hyperbolic motions, I.H.E.S. Publ. Math. 50 (1979), 171-202. MR 556586 (81b:58031)
  • [16] F. Tangermann, Meromorphic continuations of Ruelle zeta functions, Ph. D. thesis, Boston University, 1986.
  • [17] F. Warner, Foundations of differentiable manifolds and Lie groups, Springer, Berlin, 1987. MR 722297 (84k:58001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G25, 22E40, 30F40, 58F17, 58F20

Retrieve articles in all journals with MSC: 58G25, 22E40, 30F40, 58F17, 58F20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1012936-5
PII: S 0002-9939(1990)1012936-5
Keywords: Kleinian groups, Laplacian, differential forms, transfer operator, zeta function, limit set
Article copyright: © Copyright 1990 American Mathematical Society