Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The behavior of the zero-balanced hypergeometric series $ {}\sb pF\sb {p-1}$ near the boundary of its convergence region

Authors: Megumi Saigo and H. M. Srivastava
Journal: Proc. Amer. Math. Soc. 110 (1990), 71-76
MSC: Primary 33C20
MathSciNet review: 1036991
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a zero-balanced generalized hypergeometric function $ _p{F_{p - 1}}\left( z \right)$, the authors prove a formula exhibiting its behavior near the boundary point $ z = 1$ of the region of convergence of the series defining it. The result established here provides an interesting extension of a formula which appeared in one of Ramanujan's celebrated Notebooks; it also serves to solve the problem posed by R. J. Evans [5].

References [Enhancements On Off] (What's this?)

  • [1] Paul Appell, Analyse mathématique à l’usage des candidats au certificat de mathématiques générales et aux grandes écoles. Tome I. Analyse des courbes, surfaces et fonctions usuelles, intégrales simples, Gauthier-Villars, Paris, 1951 (French). 6th ed. MR 0038393
  • [2] Bruce C. Berndt, Chapter 11 of Ramanujan’s second notebook, Bull. London Math. Soc. 15 (1983), no. 4, 273–320. MR 703753, 10.1112/blms/15.4.273
  • [3] Wolfgang Bühring, The behavior at unit argument of the hypergeometric function ₃𝐹₂, SIAM J. Math. Anal. 18 (1987), no. 5, 1227–1234. MR 902328, 10.1137/0518089
  • [4] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions, vol. I, McGraw-Hill, New York, 1953.
  • [5] Ronald J. Evans, Ramanujan’s second notebook: asymptotic expansions for hypergeometric series and related functions, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 537–560. MR 938978
  • [6] Ronald J. Evans and Dennis Stanton, Asymptotic formulas for zero-balanced hypergeometric series, SIAM J. Math. Anal. 15 (1984), no. 5, 1010–1020. MR 755861, 10.1137/0515078
  • [7] O. I. Marichev and S. L. Kalla, Behaviour of hypergeometric function _{𝑝}𝐹_{𝑝-1}(𝑧) in the vicinity of unity, Rev. Técn. Fac. Ingr. Univ. Zulia 7 (1984), no. 2, 1–8 (English, with Spanish summary). MR 781315
  • [8] N. E. Nørlund, Hypergeometric functions, Acta Math. 94 (1955), 289–349. MR 0074585
  • [9] Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
  • [10] Megumi Saigo, A certain boundary value problem for the Euler-Darboux equation. II, Math. Japon. 25 (1980), no. 2, 211–220. MR 580227
  • [11] -, On a property of the Appell hypergeometric function $ {F_1}$, Math. Rep. College General Ed. Kyushu Univ. 12 (1980), 63-67.
  • [12] -, On properties of the Appell hypergeometric functions $ {F_2}$ and $ {F_3}$ and the generalized Gauss function $ _3{F_2}$, Bull. Central Res. Inst. Fukuoka Univ. 66 (1983), 27-32.
  • [13] -, On properties of the Lauricella hypergeometric function $ {F_D}$, Bull. Central Res. Inst. Fukuoka Univ. 104 (1988), 13-31.
  • [14] -, On properties of hypergeometric functions of three variables, $ {F_M}$ and $ {F_G}$, Rend. Circ. Mat. Palermo (2) 37 (1988), 449-468.
  • [15] Megumi Saigo and H. M. Srivastava, The behaviors of the Appell double hypergeometric series 𝐹₄ and certain Lauricella triple hypergeometric series near the boundaries of their convergence regions, Fukuoka Univ. Sci. Rep. 19 (1989), no. 1, 1–10. MR 996550
  • [16] -, The behavior of the Lauricella hypergeometric series $ F_D^{\left( n \right)}$ in $ n$ variables near the boundaries of its convergence region, Univ. of Victoria Report No. DM-480-IR, 1988, pp. 1-23.
  • [17] H. M. Srivastava and Per W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985. MR 834385
  • [18] H. M. Srivastava and Megumi Saigo, Multiplication of fractional calculus operators and boundary value problems involving the Euler-Darboux equation, J. Math. Anal. Appl. 121 (1987), no. 2, 325–369. MR 872230, 10.1016/0022-247X(87)90251-4

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33C20

Retrieve articles in all journals with MSC: 33C20

Additional Information

Keywords: Hypergeometric functions, boundary value problems, Euler-Darboux equation, analytic continuation, asymptotic formula, Kampé de Fériet series
Article copyright: © Copyright 1990 American Mathematical Society