Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The product of a Lindelöf space with the space of irrationals under Martin's axiom


Author: K. Alster
Journal: Proc. Amer. Math. Soc. 110 (1990), 543-547
MSC: Primary 54B10; Secondary 03E50, 54D20
DOI: https://doi.org/10.1090/S0002-9939-1990-0993736-9
MathSciNet review: 993736
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give an example of a Lindelöf space whose product with the space of irrationals is not Lindelöf provided that Martin's axiom holds. Our result is an improvement of a Michael's construction using the Continuum Hypothesis.


References [Enhancements On Off] (What's this?)

  • [BD] D. K. Burke and S. W. Davis, Subsets of ^{𝜔}𝜔 and generalized metric spaces, Pacific J. Math. 110 (1984), no. 2, 273–281. MR 726486
  • [E] Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna. Tom 47. [Mathematics Library. Vol. 47]. MR 0500779
    Ryszard Engelking, General topology, PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR 0500780
  • [K] Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR 756630
  • [M] Ernest A. Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23 (1971), 199–214. MR 0287502

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B10, 03E50, 54D20

Retrieve articles in all journals with MSC: 54B10, 03E50, 54D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0993736-9
Article copyright: © Copyright 1990 American Mathematical Society