Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Dimension and infinite products in separable metric spaces

Author: John Kulesza
Journal: Proc. Amer. Math. Soc. 110 (1990), 557-563
MSC: Primary 54F45; Secondary 54G20
MathSciNet review: 1017848
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For each pair $ n,d$ of positive integers with $ n \leq d$, there is a separable metric space $ {X_{nd}}$ satisfying $ \dim \left( {{X_{nd}}} \right) = n$ and $ \dim \left( {X_{nd}^\omega } \right) = d$.

References [Enhancements On Off] (What's this?)

  • [AK] R. D. Anderson and J. E. Keisler, An example in dimension theory, Proc. Amer. Math. Soc. 18 (1967), 709-713. MR 0215288 (35:6130)
  • [E] R. Engelking, Dimension theory, North-Holland, Amsterdam, 1978. MR 0482697 (58:2753b)
  • [K] J. Kulesza, The dimension of products of complete separable metric spaces, Fund. Math. (to appear). MR 1074648 (92b:54074)
  • [P] E. Pol, On the dimension of the product of metrizable spaces, Bull. Polska Akad. Nauk 26 (1978), 525-533. MR 511956 (80f:54032)
  • [Po] L. S. Pontrjagin, Sur un hypothese fondamentale de la theorie de la dimension, C. R. Acad. Sci. Paris Sér. I Math. 190 (1930), 1105-1107.
  • [RSW] L. Rubin, R. Schori, and J. Walsh, New dimension theory techniques for constructing infinite dimensional examples, Gen. Topology Appl. 10 (1979), 93-102. MR 519716 (80e:54049)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45, 54G20

Retrieve articles in all journals with MSC: 54F45, 54G20

Additional Information

Keywords: Separable metric space, dimension, product space, general position
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society