Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $ 0<\alpha <\frac 12$


Authors: Shu Ping Chen and Roberto Triggiani
Journal: Proc. Amer. Math. Soc. 110 (1990), 401-415
MSC: Primary 47D05; Secondary 34G10, 73D30
MathSciNet review: 1021208
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ (the elastic operator) be a positive, self-adjoint operator with domain $ \mathcal{D}(A)$ in the Hilbert space $ X$, and let $ B$ (the dissipation operator) be another positive, self-adjoint operator satisfying $ {\rho _1}{A^\alpha } \leq B \leq {\rho _2}{A^\alpha }$ for some constants $ 0 < {\rho _1} < {\rho _2} < \infty $ and $ 0 < \alpha \leq 1$. Consider the operator

$\displaystyle {\mathcal{A}_B} = \left\vert {\begin{array}{*{20}{c}} 0 & I \\ { - A} & { - B} \\ \end{array} } \right\vert$

(corresponding to the elastic model $ \ddot x + B\dot x + Ax = 0$ written as a first order system), which (once closed) is plainly the generator of a strongly continuous semigroup of contractions on the space $ E = \mathcal{D}({A^{1/2}}) \times X$. In [C-T.l] [C-T.3] we showed that, for $ \tfrac{1}{2} \leq \alpha \leq 1$, such a semigroup is analytic (holomorphic) on $ E$ on a triangular sector of $ {\mathbf{C}}$ containing the positive real axis and, moreover, that the property of analyticity is false for $ 0 < \alpha < \tfrac{1}{2}$, say for $ B = {A^\alpha }$. We now complete the description of $ {\mathcal{A}_B}$ in the range $ 0 < \alpha < \tfrac{1}{2}$ by showing that such semigroup is in fact of Gevrey class $ \delta > 1/2\alpha $, hence differentiable on $ E$ for all $ t > 0$.

References [Enhancements On Off] (What's this?)

  • [B.1 ] A. V. Balakrishnan, Damping operators in continuum models of flexible structures, preprint.
  • [C-R.1] G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping, Quart. Appl. Math. 39 (1981/82), no. 4, 433–454. MR 644099 (83f:70034)
  • [C-T.1] Shu Ping Chen and Roberto Triggiani, Proof of two conjectures by G. Chen and D. L. Russell on structural damping for elastic systems, Approximation and optimization (Havana, 1987) Lecture Notes in Math., vol. 1354, Springer, Berlin, 1988, pp. 234–256. MR 996678 (90j:34088), http://dx.doi.org/10.1007/BFb0089601
  • [C-T.2] Shu Ping Chen and Roberto Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math. 136 (1989), no. 1, 15–55. MR 971932 (90g:47071)
  • [C-T.3] Shu Ping Chen and Roberto Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math. 136 (1989), no. 1, 15–55. MR 971932 (90g:47071)
  • [K.1] S. G. Kreĭn, Linear differential equations in Banach space, American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by J. M. Danskin; Translations of Mathematical Monographs, Vol. 29. MR 0342804 (49 #7548)
  • [K.2] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473 (34 #3324)
  • [L.1] Walter Littman, A generalization of a theorem of Datko and Pazy, Advances in computing and control (Baton Rouge, LA, 1988) Lecture Notes in Control and Inform. Sci., vol. 130, Springer, Berlin, 1989, pp. 318–323. MR 1029070 (91a:47052), http://dx.doi.org/10.1007/BFb0043280
  • [L.2] J. L. Lions, Controlabilite exacte des systemes distribues, Masson, Paris, 1989.
  • [L-M.1] J. L. Lions and E. Magenes, Non homogeneous boundary value problems and applications I, Springer-Verlag, New York, 1972.
  • [P.1] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486 (85g:47061)
  • [T.l] Roberto Triggiani, On the stabilizability problem in Banach space, J. Math. Anal. Appl. 52 (1975), no. 3, 383–403. MR 0445388 (56 #3730)
  • [T.2] -, Improving stability properties of hyperbolic damped equations by boundary feedback, Springer-Verlag Lecture Notes (LNCIS), 1985, 400-409.
  • [T.3] R. Triggiani, Finite rank, relatively bounded perturbations of semi-groups generators. III.\ A sharp result on the lack of uniform stabilization, Differential Integral Equations 3 (1990), no. 3, 503–522. MR 1047750 (91f:93091)
  • [T.4] S. Taylor, Ph.D. thesis, Chapter 'Gevrey semigroups', School of Mathematics, University of Minnesota, 1989.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05, 34G10, 73D30

Retrieve articles in all journals with MSC: 47D05, 34G10, 73D30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1021208-4
PII: S 0002-9939(1990)1021208-4
Article copyright: © Copyright 1990 American Mathematical Society