Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The normal holonomy group


Author: Carlos Olmos
Journal: Proc. Amer. Math. Soc. 110 (1990), 813-818
MSC: Primary 53C40; Secondary 53C35
DOI: https://doi.org/10.1090/S0002-9939-1990-1023346-9
MathSciNet review: 1023346
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the restricted normal holonomy group of a submanifold of a space of constant curvature is compact and that the nontrivial part of its representation on the normal space is the isotropy representation of a semisimple Riemannian symmetric space.


References [Enhancements On Off] (What's this?)

  • [B] M. Berger, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés Riemannienes, Bull. Soc. Math. France 83 (1955), 279, 230. MR 0079806 (18:149a)
  • [K-N] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I, Interscience Publishers, 1963. MR 0152974 (27:2945)
  • [S] J. Simons, On the transitivity of holonomy systems, Ann. of Math. (2) 76 (1962). MR 0148010 (26:5520)
  • [S-O] C. Olmos and C. Sanchez, A geometric characterization of $ R$-spaces, preprint.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C40, 53C35

Retrieve articles in all journals with MSC: 53C40, 53C35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1023346-9
Keywords: Normal connection, holonomy group, normal curvature tensor
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society