Analyticity of almost everywhere differentiable functions
Author:
Eric J. Howard
Journal:
Proc. Amer. Math. Soc. 110 (1990), 745753
MSC:
Primary 26B05; Secondary 26E05, 30B40
MathSciNet review:
1027093
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We develop a partitioning lemma (see Lemma 5) for superadditive set functions satisfying certain continuity conditions. This leads to a relatively simple proof of two theorems of A. S. Besicovitch on when a function of a complex variable that is continuous and differentiable outside of small exceptional sets is analytic (or almost everywhere equal to an analytic function).
 [B]
A. S. Besicovitch, On sufficient conditions for a function to be analytic, and behaviour of analytic functions in the neighborhood of nonisolated singular points, Proc. London Math. Soc. 32 (1931), 19.
 [Fa]
K.
J. Falconer, The geometry of fractal sets, Cambridge Tracts in
Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
(88d:28001)
 [Fe]
Herbert
Federer, Geometric measure theory, Die Grundlehren der
mathematischen Wissenschaften, Band 153, SpringerVerlag New York Inc., New
York, 1969. MR
0257325 (41 #1976)
 [H]
Ralph
Henstock, Lectures on the theory of integration, Series in
Real Analysis, vol. 1, World Scientific Publishing Co., Singapore,
1988. MR
963249 (91a:28001)
 [P1]
W.
F. Pfeffer, A note on the lower derivate of a set
function and semihereditary systems of sets, Proc. Amer. Math. Soc. 18 (1967), 1020–1025. MR 0218503
(36 #1589), http://dx.doi.org/10.1090/S00029939196702185032
 [P2]
W.
F. Pfeffer, On the lower derivate of a set function, Canad. J.
Math. 20 (1968), 1489–1498. MR 0232906
(38 #1229)
 [P3]
Washek
F. Pfeffer, The multidimensional fundamental theorem of
calculus, J. Austral. Math. Soc. Ser. A 43 (1987),
no. 2, 143–170. MR 896622
(89b:26013)
 [P4]
, Divergence theorem for vector fields with singularities, unpublished.
 [P5]
Washek
F. Pfeffer, Stokes theorem for forms with singularities, C. R.
Acad. Sci. Paris Sér. I Math. 306 (1988),
no. 14, 589–592 (English, with French summary). MR 941632
(89k:26008)
 [PW]
W.
F. Pfeffer and W.
J. Wilbur, A note on cluster points of a
semihereditary stable system of sets., Proc.
Amer. Math. Soc. 21
(1969), 121–125. MR 0238253
(38 #6529), http://dx.doi.org/10.1090/S00029939196902382538
 [PY]
Washek
F. Pfeffer and WeiChi
Yang, A multidimensional variational integral and its
extensions, Real Anal. Exchange 15 (1989/90),
no. 1, 111–169. MR 1042534
(91b:26016)
 [R]
H.
L. Royden, A generalization of Morera’s theorem, Ann.
Polon. Math. 12 (1962), 199–202. MR 0141766
(25 #5163)
 [S]
Stanisław
Saks, Theory of the integral, Second revised edition. English
translation by L. C. Young. With two additional notes by Stefan Banach,
Dover Publications, Inc., New York, 1964. MR 0167578
(29 #4850)
 [Z]
Lawrence
Zalcman, Analyticity and the Pompeiu problem, Arch. Rational
Mech. Anal. 47 (1972), 237–254. MR 0348084
(50 #582)
 [B]
 A. S. Besicovitch, On sufficient conditions for a function to be analytic, and behaviour of analytic functions in the neighborhood of nonisolated singular points, Proc. London Math. Soc. 32 (1931), 19.
 [Fa]
 K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, Cambridge, 1985. MR 867284 (88d:28001)
 [Fe]
 H. Federer, Geometric measure theory, SpringerVerlag, New York, 1969. MR 0257325 (41:1976)
 [H]
 R. Henstock, Lectures on the theory of integration, World Scientific, Singapore, 1988. MR 963249 (91a:28001)
 [P1]
 W. F. Pfeffer, A note on the lower derivate of a set function and semihereditary systems of sets, Proc. Amer. Math. Soc. 18 (1967), 10201025. MR 0218503 (36:1589)
 [P2]
 , On the lower derivate of a set function, Canad. J. Math. 20 (1968), 14891498. MR 0232906 (38:1229)
 [P3]
 , The multidimensional fundamental theorem of calculus, J. Australian Math. Soc. 43 (1987), 143170. MR 896622 (89b:26013)
 [P4]
 , Divergence theorem for vector fields with singularities, unpublished.
 [P5]
 , Stokes theorem for forms with singularities, C. R. Acad. Sci. Paris, Sér. I 306 (1988), 589592. MR 941632 (89k:26008)
 [PW]
 W. F. Pfeffer and W. J. Wilber, A note on cluster points of a semihereditary stable system of sets, Proc. Amer. Math. Soc. 21 (1969), 121125. MR 0238253 (38:6529)
 [PY]
 W. F. Pfeffer and WeiChi Yang, A multidimensional variational integral and its extensions, Real Analysis Exchange (1) 15 (198990), 111169. MR 1042534 (91b:26016)
 [R]
 H. L. Royden, A generalization of Morera 's theorem, Ann. Polon. Math. 12 (1962), 199202. MR 0141766 (25:5163)
 [S]
 S. Saks, Theory of the integral, Dover, New York, 1964. MR 0167578 (29:4850)
 [Z]
 L. Zalcman, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal. 47 (1972), 237254. MR 0348084 (50:582)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
26B05,
26E05,
30B40
Retrieve articles in all journals
with MSC:
26B05,
26E05,
30B40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199010270939
PII:
S 00029939(1990)10270939
Keywords:
fine partition,
exceptional set,
lower derivate
Article copyright:
© Copyright 1990
American Mathematical Society
