Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Sierpiński sets and strong first category

Authors: Jakub Jasiński and Tomasz Weiss
Journal: Proc. Amer. Math. Soc. 111 (1991), 235-238
MSC: Primary 28A05; Secondary 04A15
MathSciNet review: 1039257
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ S$ is a Sierpinski set and $ N \subseteq \mathbb{R}$ is an $ {F_\sigma }$ set of measure zero, then $ (N + t) \cap S = \emptyset $ for some $ t \in \mathbb{R}$. A similar result holds for generalized Sierpinski sets under Martin's Axiom.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A05, 04A15

Retrieve articles in all journals with MSC: 28A05, 04A15

Additional Information

PII: S 0002-9939(1991)1039257-X
Article copyright: © Copyright 1991 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia