Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invariant signed measures and the cancellation law


Author: M. Laczkovich
Journal: Proc. Amer. Math. Soc. 111 (1991), 421-431
MSC: Primary 28D15; Secondary 20B99
DOI: https://doi.org/10.1090/S0002-9939-1991-1036988-2
MathSciNet review: 1036988
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a set, and let the group $ G$ act on $ X$. We show that, for every $ A,B \subset X$, the following are equivalent: (i) $ A$ and $ B$ are $ G$-equidecomposable; and (ii) $ \vartheta (A) = \vartheta (B)$ for every $ G$-invariant finitely additive signed measure $ \vartheta $. If the sets and the pieces of the decompositions are restricted to belong to a given $ G$-invariant field $ \mathcal{A}$, then $ ({\text{i}}) \Leftrightarrow ({\text{ii}})$ if and only if the cancellation law $ (n[A] = n[B] \Rightarrow [A] = [B])$ holds in the space $ (X,G,\mathcal{A})$. We show that the cancellation law may fail even if the transformation group $ G$ is Abelian.


References [Enhancements On Off] (What's this?)

  • [1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys 7, Amer. Math. Soc., 1961. MR 0132791 (24:A2627)
  • [2] R. J. Gardner and M. Laczkovich, The Banach-Tarski theorem on polygons and the cancellation law, Proc. Amer. Math. Soc. 109 (1990), 1097-1102. MR 1017001 (90k:52001)
  • [3] W. Sierpiński, On the congruence of sets and their equivalence by finite decomposition, Lucknow, 1954; reprinted by Chelsea, 1967. MR 0060567 (15:691c)
  • [4] A. Tarski, Über das absolute Mass linearer Punktmengen, Fund. Math. 30 (1938), 218-234.
  • [5] -, Cardinal algebras, Oxford Univ. Press, 1949.
  • [6] J. K. Truss, The failure of cancellation laws for equidecomposability types, Canad. J. Math. (to appear). MR 1074225 (91k:03147)
  • [7] S. Wagon, The Banach-Tarski paradox, Cambridge Univ. Press, 1986. MR 1251963 (94g:04005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D15, 20B99

Retrieve articles in all journals with MSC: 28D15, 20B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1036988-2
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society