Algebras of invariant functions on the Šilov boundary of generalized half-planes

Author:
Giovanna Carcano

Journal:
Proc. Amer. Math. Soc. **111** (1991), 743-753

MSC:
Primary 22E30; Secondary 32M15, 43A20

MathSciNet review:
1039253

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the nilpotent Lie group identified to the Šilov boundary of a symmetric generalized half-plane and a compact group acting on by automorphisms, arising from the realization of as hermitian symmetric space. Is then a Gelfand pair? We study the problem and resolve it in the case of classical families.

**[1]**C. Benson, J. Jenkins, and G. Ratcliff,*On Gelfand pairs associated with nilpotent Lie groups*, preprint.**[2]**Giovanna Carcano,*A commutativity condition for algebras of invariant functions*, Boll. Un. Mat. Ital. B (7)**1**(1987), no. 4, 1091–1105 (English, with Italian summary). MR**923441****[3]**-,*Hermitian symmetric spaces and Siegel domains*, Boll. Un. Mat. It. (to appear).**[4]**Sigurdur Helgason,*Differential geometry, Lie groups, and symmetric spaces*, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**514561****[5]**A. Hulanicki and F. Ricci,*A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in 𝐶ⁿ*, Invent. Math.**62**(1980/81), no. 2, 325–331. MR**595591**, 10.1007/BF01389163**[6]**A. Kaplan and F. Ricci,*Harmonic analysis on groups of Heisenberg type*, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 416–435. MR**729367**, 10.1007/BFb0069172**[7]**A. Korányi,*Some applications of Gelfand pairs in classical analysis*, C.I.M.E.-Summer School on Harmonic Analysis and Group Representation, Liquori, Napoli, 1982, pp. 335-348.**[8]**Adam Korányi and Joseph A. Wolf,*Realization of hermitian symmetric spaces as generalized half-planes*, Ann. of Math. (2)**81**(1965), 265–288. MR**0174787****[9]**R. D. Ogden and S. Vági,*Harmonic analysis of a nilpotent group and function theory of Siegel domains of type 𝐼𝐼*, Adv. in Math.**33**(1979), no. 1, 31–92. MR**540636**, 10.1016/S0001-8708(79)80009-2**[10]**Ichirô Satake,*Algebraic structures of symmetric domains*, Kanô Memorial Lectures, vol. 4, Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J., 1980. MR**591460****[11]**Stephen Vági,*On the boundary values of holomorphic functions*, Rev. Un. Mat. Argentina**25**(1970/71), 123–136. Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday. MR**0318797****[12]**Edoardo Vesentini,*Holomorphic almost periodic functions and positive-definite functions on Siegel domains*, Ann. Mat. Pura Appl. (4)**102**(1975), 177–202. MR**0370066**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
22E30,
32M15,
43A20

Retrieve articles in all journals with MSC: 22E30, 32M15, 43A20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1039253-2

Article copyright:
© Copyright 1991
American Mathematical Society