Varieties with cofinal sets: examples and amalgamation

Authors:
Peter Bruyns and Henry Rose

Journal:
Proc. Amer. Math. Soc. **111** (1991), 833-840

MSC:
Primary 08B10; Secondary 03C05, 03C20, 06B20, 08B25

DOI:
https://doi.org/10.1090/S0002-9939-1991-1039528-7

MathSciNet review:
1039528

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A variety has a cofinal set if any is embeddable in a reduced product of members of . Amalgamation in and examples of such varieties are considered. Among other results, the following are proved: (i) every lattice is embeddable in an ultraproduct of finite partition lattices; (ii) if is a residually small, congruence distributive variety whose members all have one-element subalgebras, then the amalgamation class of is closed under finite products.

**[1]**J. L. Bell and A. B. Slomson,*Models and ultraproducts*, North-Holland, 1969. MR**0269486 (42:4381)****[2]**C. Bergman,*Amalgamation classes of some distributive varieties*, Algebra Universalis**20**(1985), 143-166. MR**806610 (87g:08016)****[3]**S. Burris and H. P. Sankapanavar,*A course in universal algebra*, Springer-Verlag, 1981. MR**648287 (83k:08001)****[4]**C. Chang and H. J. Keisler,*Model theory*, North-Holland, 1973.**[5]**G. Grätzer,*General lattice theory*, Birkhäuser Verlag, Basel and Stuttgart, 1978. MR**504338 (80c:06001a)****[6]**G. Grätzer and H. Lakser,*The structure of pseudocomplemented, distributive lattices*II:*Congruence extensions and amalgamations*, Trans. Amer. Math. Soc.**156**(1971), 343-358. MR**0274359 (43:124)****[7]**P. Jipsen and H. Rose,*Absolute retracts and amalgamation in certain congruence-distributive varieties*, Canad. Math. Bull.**32**(1989), 309-313. MR**1010069 (91b:08009)****[8]**B. Jónsson,*Amalgamation in small varieties of lattices*, preprint, 1986.**[9]**P. Pudlak and J. Tuma,*Every finite lattice can be embedded in the lattice of all equivalences over a finite set*, Algebra Universalis**10**(1980), 74-95. MR**552159 (81e:06013)****[10]**W. Taylor,*Residually small varieties*, Algebra Universalis**2**(1972), 33-53. MR**0314726 (47:3278)****[11]**M. Yasuhara,*The amalgamation property, the universal-homogeneous models and the generic models*, Math. Scand.**34**(1974), 5-36. MR**0371642 (51:7860)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
08B10,
03C05,
03C20,
06B20,
08B25

Retrieve articles in all journals with MSC: 08B10, 03C05, 03C20, 06B20, 08B25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1039528-7

Article copyright:
© Copyright 1991
American Mathematical Society