Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

A functional central limit theorem in Diophantine approximation


Author: Jorge D. Samur
Journal: Proc. Amer. Math. Soc. 111 (1991), 901-911
MSC: Primary 11K60; Secondary 60F17
MathSciNet review: 998739
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A functional central limit theorem is proved for the number of solutions $ (p,q)$ of the inequality $ \vert q\omega - p\vert < f(q){q^{ - 1}},q \leq n$ (respectively $ 0 < q\omega - p < f(q){q^{ - 1}},q \leq n$ for some functions $ f$ having a positive limit.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11K60, 60F17

Retrieve articles in all journals with MSC: 11K60, 60F17


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1991-0998739-7
PII: S 0002-9939(1991)0998739-7
Keywords: Diophantine approximation, functional central limit theorem, invariance principle, continued fraction expansion, mixing random variables
Article copyright: © Copyright 1991 American Mathematical Society