Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Endpoint estimates for the maximal operator associated to spherical partial sums on radial functions

Authors: Elena Romera and Fernando Soria
Journal: Proc. Amer. Math. Soc. 111 (1991), 1015-1022
MSC: Primary 42B25
MathSciNet review: 1068130
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ Tf(x) = {\sup _{R > 0}}\left\vert {{S_R}f(x)} \right\vert$ where $ {S_R}$ is the spherical partial sum operator. We show that $ T$ is bounded from the Lorentz space $ {L_{{p_i},1}}({{\mathbf{R}}^n})$ into $ {L_{{p_i},\infty }}({{\mathbf{R}}^n}),i = 0,1$ when acting on radial functions and where $ {p_0} = \tfrac{{2n}}{{n + 1}},{p_1} = \tfrac{{2n}}{{n - 1}}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25

Retrieve articles in all journals with MSC: 42B25

Additional Information

PII: S 0002-9939(1991)1068130-6
Article copyright: © Copyright 1991 American Mathematical Society