Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


On the semiring $ L\sp +(C\sb 0(X))$

Author: Jor-Ting Chan
Journal: Proc. Amer. Math. Soc. 112 (1991), 171-174
MSC: Primary 46E25; Secondary 06F25, 46E15
MathSciNet review: 1037205
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ and $ Y$ be locally compact Hausdorff spaces. Let $ {C_0}(X)$ (resp. $ {C_0}(Y)$) denote the Banach space of all continuous functions on $ X$ vanishing at infinity on $ X$ (resp. $ Y$) and $ {L^ + }({C_0}(X))$ (resp. $ {L^ + }({C_0}(Y))$) the semiring of positive operators on $ {C_0}(X)$ (resp. $ {C_0}(Y)$). We prove that if there exists a semiring isomorphism $ \varphi $ from $ {L^ + }({C_0}(X))$ onto $ {L^ + }({C_0}(Y))$, then $ X$ and $ Y$ are homeomorphic. If $ X$ and $ Y$ are assumed to be compact then the same conclusion holds under the milder condition that $ \varphi $ is an affine isomorphism and $ \varphi ({I_{C(X)}})$ is order bounded.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E25, 06F25, 46E15

Retrieve articles in all journals with MSC: 46E25, 06F25, 46E15

Additional Information

PII: S 0002-9939(1991)1037205-X
Article copyright: © Copyright 1991 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia