Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sofic constant-to-one extensions of subshifts of finite type


Authors: F. Blanchard and G. Hansel
Journal: Proc. Amer. Math. Soc. 112 (1991), 259-265
MSC: Primary 54H20; Secondary 28D05
DOI: https://doi.org/10.1090/S0002-9939-1991-1050016-4
MathSciNet review: 1050016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Provided a constant-to-one extension of a subshift of finite type is sofic and transitive, then it is also of finite type.


References [Enhancements On Off] (What's this?)

  • [1] F. Blanchard, Extensions à fibre constante, Ergodic Theory Dynamical Systems (to appear). MR 1101081 (92f:58052)
  • [2] F. Blanchard and G. Hansel, Systèmes codés, Theoret. Comput. Sci. 44 (1986), 17-49. MR 858689 (88m:68029)
  • [3] M. Boyle, B. Marcus, and P. Trow, Resolving maps and a dimension group for subshifts of finite type, Mem. Amer. Math. Soc., no. 377, Amer. Math. Soc., Providence, RI, 1987. MR 912638 (89c:28019)
  • [4] R. Fischer, Sofic systems and graphs, Monatsh. Math. 80 (1975), 179-186. MR 0407235 (53:11018)
  • [5] W. Krieger, personal communication.
  • [6] M. Nasu, Constant-to-one and onto global maps of homomorphisms between strongly connected graphs, Ergodic Theory Dynamical Systems 3 (1983), 387-414. MR 741394 (85m:58162)
  • [7] D. Rudolph, If a two-point extension of a Bernoulli shift has an ergodic square, then it is Bernoulli, Israel J. Math. 30 (1978), 159-180. MR 508261 (80h:28028a)
  • [8] -, If a finite extension of a Bernoulli shift has no finite rotation factors, it is Bernoulli, Israel J. Math. 30 (1978), 193-206. MR 508264 (80h:28028b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20, 28D05

Retrieve articles in all journals with MSC: 54H20, 28D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1050016-4
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society