Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Vietoris-Begle theorem and spectra

Authors: Jerzy Dydak and George Kozlowski
Journal: Proc. Amer. Math. Soc. 113 (1991), 587-592
MSC: Primary 55N05; Secondary 55N20, 55P20
MathSciNet review: 1046999
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following generalization of the Vietoris-Begle Theorem is proved: Suppose $ {\left\{ {{E_k}} \right\}_{k \geq 1}}$ is a CW spectrum and $ f:X' \to X$ is a closed surjective map of paracompact Hausdorff spaces such that $ \operatorname{Ind} X = m < \infty $. If $ {f^*}:{E^k}(x) \to {E^k}({f^{ - 1}}(x))$ is an isomorphism for all $ x \in X$ and $ k = {m_0},{m_0} + 1, \ldots ,{m_0} + m$, then $ {f^*}:{E^n}(X) \to {E^n}(X')$ is an isomorphism and $ {f^*}:{E^{n + 1}}(X) \to {E^{n + 1}}(X')$ is a monomorphism for $ n = {m_0} + m$.

References [Enhancements On Off] (What's this?)

  • [B] J. Boardman, Stable homotopy theory, mimeographed notes, Johns Hopkins University, Baltimore, 1970.
  • [D] A. Dold, Lectures on algebraic topology, Springer-Verlag, Berlin, 1972. MR 0415602 (54:3685)
  • [D-K] J. Dydak and G. Kozlowski, A generalization of the Vietoris-Begle theorem, Proc. Amer. Math. Soc. 102 (1988), 209-12. MR 915746 (89a:55003)
  • [Dr] A. N., Dranišnikov, On a problem of P. S. Aleksandrov, Mat.-Sb. 135 (1988), 51-557.
  • [D-S] J. Dydak and J. Segal, Shape theory: an introduction, Lecture Notes in Math., vol. 688, Springer-Verlag, Berlin, 1978,pp. 1-150. MR 520227 (80h:54020)
  • [G] B. I. Gray, Homotopy theory, Academic Press New York, 1975. MR 0402714 (53:6528)
  • [K] J. E. Keesling, A non-movable trivial-silape decomposition of the Hubertccube, Bulc. Acad. Polon. Sei. Ser. Sei. Math. Astronom. Phys 23 (1975), 997-998. MR 0391100 (52:11922)
  • [Ko] G. Kozlowski, Images of ANR 's, mimeographed notes, University of Washington, Seattle, 1974.
  • [S] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [Sw] R. M. Switzer, Algebraic topology--homotopy and homology, Springer-Verlag, Berlin, 1975. MR 0385836 (52:6695)
  • [T] J. L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629-632. MR 0375328 (51:11523)
  • [W] G. W. Whitehead, Elements of homotopy theory, Springer-Verlag, Berlin, 1978. MR 516508 (80b:55001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N05, 55N20, 55P20

Retrieve articles in all journals with MSC: 55N05, 55N20, 55P20

Additional Information

Keywords: Vietoris-Begle theorem, spectra, cohomology
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society